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Preface: Deep Thought Meets Fluent Action

If you had to build an intelligent agent, where would you begin? What strikes you as the special
something that separates the unthinking world of rocks, waterfalls, and volcanos from the realms of
responsive intelligence? What is it that allows some parts of the natural order to survive by perceiving
and acting while the rest stay on the sidelines, thought-free and inert?

"Mind," "intellect,” "ideas": these are the things that make the difference. But how should they be
understood? Such words conjure nebulous realms. We talk of "pure intellect," and we describe the
savant as "lost in thought." All too soon we are seduced by Descartes' vision: a vision of mind as a realm
quite distinct from body and world. 1 A realm whose essence owes nothing to the accidents of body and
surroundings. The (in)famous "Ghost in the Machine."2

Such extreme opposition between matter and mind has long since been abandoned. In its stead we find a
loose coalition of sciences of the mind whose common goal is to understand how thought itself is
materially possible. The coalition goes by the name cognitive science, and for more than thirty years
computer models of the mind have been among its major tools. Theorizing on the cusp between science
fiction and hard engineering, workers in the subfield known as artificial intelligence3 have tried to give
computational flesh to ideas about how the mind may arise out of the workings of a physical
machine—in our case, the brain. As Aaron Sloman once put it, "Every intelligent ghost must contain a
machine."4 The human brain, it seems, is the mechanistic underpinning of the human mind. When
evolution threw up complex brains, mobile bodies, and nervous systems, it opened the door (by purely
physical means) to whole new
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ways of living and adapting—ways that place us on one side of a natural divide, leaving volcanos,
waterfalls, and the rest of cognitively inert creation on the other.
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But, for all that, a version of the old opposition between matter and mind persists. It persists in the way
we study brain and mind, excluding as "peripheral” the roles of the rest of the body and the local
environment. It persists in the tradition of modeling intelligence as the production of symbolically coded
solutions to symbolically expressed puzzles. It persists in the lack of attention to the ways the body and
local environment are literally built into the processing loops that result in intelligent action. And it
persists in the choice of problem domains: for example, we model chess playing by programs such as
Deep Thought 2 when we still can't get a real robot to successfully navigate a crowded room and we still
can't fully model the adaptive success of a cockroach.

In the natural context of body and world, the ways brains solve problems is fundamentally transformed.
This is not a deep philosophical fact (though it has profound consequences). It is a matter of practicality.
Jim Nevins, who works on computer-controlled assembly, cites a nice example. Faced with the problem
of how to get a computer-controlled machine to assemble tight-fitting components, one solution is to
exploit multiple feedback loops. These could tell the computer if it has failed to find a fit and allow it to
try to again in a slightly different orientation. This is, if you like, the solution by Pure Thought. The
solution by Embodied Thought is quite different. Just mount the assembler arms on rubber joints,
allowing them to give along two spatial axes. Once this is done, the computer can dispense with the fine-
grained feedback loops, as the parts "jiggle and slide into place as if millions of tiny feedback
adjustments to a rigid system were being continuously computed."6 This makes the crucial point that
treating cognition as pure problem solving invites us to abstract away from the very body and the very
world in which our brains evolved to guide us.

Might it not be more fruitful to think of brains as controllers for embodied activity? That small shift in
perspective has large implications for how we construct a science of the mind. It demands, in fact, a
sweeping reform in our whole way of thinking about intelligent behavior. It requires us to abandon the
idea (common since Descartes) of the mental
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as a realm distinct from the realm of the body; to abandon the idea of neat dividing lines between
perception, cognition, and action 7; to abandon the idea of an executive center where the brain carries
out high-level reasoning®; and most of all, to abandon research methods that artificially divorce thought
from embodied action-taking.

What emerges is nothing less than a new science of the mind: a science that, to be sure, builds on the
fruits of three decades' cooperative research, but a science whose tools and models are surprisingly
different—a cognitive science of the embodied mind. This book is a testimony to that science. It traces
some of its origins, displays its flavor, and confronts some of its problems. It is surely not the last new
science of mind. But it is one more step along that most fascinating of journeys: the mind's quest to
know itself and its place in nature.
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Groundings

Being There didn't come from nowhere. The image of mind as inextricably interwoven with body,
world, and action, already visible in Martin Heidegger's Being and Time (1927), found clear expression
in Maurice Merleau-Ponty's Structure of Behavior (1942). Some of the central themes are present in the
work of the Soviet psychologists, especially Lev Vygotsky; others owe much to Jean Piaget's work on
the role of action in cognitive development. In the literature of cognitive science, important and
influential previous discussions include Maturana and Varela 1987, Winograd and Flores 1986, and,
especially, The Embodied Mind (Varela et al. 1991). The Embodied Mind is among the immediate roots
of several of the trends identified and pursued in the present treatment.

My own exposure to these trends began, I suspect, with Hubert Dreyfus's 1979 opus What Computers
Can't Do. Dreyfus's persistent haunting of classical artificial intelligence helped to motivate my own
explorations of alternative computational models (the connectionist or parallel distributed processing
approaches; see Clark 1989 and Clark 1993) and to cement my interest in biologically plausible images
of mind and cognition. Back in 1987 | tested these waters with a short paper, also (and not
coincidentally) entitled "Being There," in which embodied, environmentally embedded cognition was
the explicit topic of discussion. Since then, connectionism, neuroscience, and real-world robotics have
all made enormous strides. And it is here, especially in the explosion of research in robotics and so-
called artificial life (see e.g. papers in Brooks and Maes 1994), that we finally locate the most immediate
Impetus of the present discussion. At last (it seems to me), a more rounded, compelling, and integrative
picture is emerging—one that draws together many of the
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elements of the previous discussions, and that does so in a framework rich in practical illustrations and
concrete examples. It is this larger, more integrative picture that | here set out to display and examine.

The position | develop owes a lot to several authors and friends. At the top of the list, without a doubt,
are Paul Churchland and Dan Dennett, whose careful yet imaginative reconstructions of mind and
cognition have been the constant inspiration behind all my work. More recently, | have learned a lot
from interactions and exchanges with the roboticists Rodney Brooks, Randall Beer, Tim Smithers, and
John Hallam. I have also been informed, excited, and challenged by various fans of dynamic systems
theory, in particular Tim van Gelder, Linda Smith, Esther Thelen, and Michael Wheeler. Several
members of the Sussex University Evolutionary Robotics Group have likewise been inspiring,
infuriating, and always fascinating—especially Dave Cliff and Inman Harvey.



Very special thanks are due to Bill Bechtel, Morten Christiansen, David Chalmers, Keith Butler, Rick
Grush, Tim Lane, Pete Mandik, Rob Stufflebeam, and all my friends, colleagues, and students in the
Philosophy/Neuroscience/Psychology (PNP) program at Washington University in St. Louis. It was
there, also, that | had the good fortune to encounter Dave Hilditch, whose patient attempts to integrate
the visions of Merleau-Ponty and contemporary cognitive science were a source of joy and inspiration.
Thanks too to Roger Gibson, Larry May, Marilyn Friedman, Mark Rollins, and all the members of the
Washington University Philosophy Department for invaluable help, support, and criticism.

David van Essen, Charlie Anderson, and Tom Thach, of the Washington University Medical School
deserve special credit for exposing me to the workings of real neuroscience—nbut here, especially, the
receipt of thanks should not exact any burden of blame for residual errors or misconceptions. Doug
North, Art Denzau, Norman Schofield, and John Drobak did much to smooth and encourage the brief
foray into economic theory that surfaces in chapter 9—thanks too to the members of the Hoover Institute
Seminar on Collective Choice at Stanford University. | shouldn't forget my cat, Lolo, who kept things in
perspective by sitting on many versions of the manuscript, or the Santa Fe Institute, which provided
research time and critical feedback at some crucial junctures—thanks especially to David Lane, Brian
Arthur, Chris Langton, and Melanie Mitchell for mak-
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so many ways. Beth Stufflebeam provided fantastic help throughout the preparation of the manuscript.
And Josefa Toribio, my wife and colleague, was critical, supportive, and inspiring in perfect measure.
My heartfelt thanks to you all.
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Introduction: A Car with a Cockroach Brain

Where are the artificial minds promised by 1950s science fiction and 1960s science journalism? Why
are even the best of our "intelligent™ artifacts still so unspeakably, terminally dumb? One possibility is
that we simply misconstrued the nature of intelligence itself. We imagined mind as a kind of logical
reasoning device coupled with a store of explicit data—a kind of combination logic machine and filing
cabinet. In so doing, we ignored the fact that minds evolved to make things happen. We ignored the fact
that the biological mind is, first and foremost, an organ for controlling the biological body. Minds make
motions, and they must make them fast—~before the predator catches you, or before your prey gets away
from you. Minds are not disembodied logical reasoning devices.

This simple shift in perspective has spawned some of the most exciting and groundbreaking work in the
contemporary study of mind. Research in "neural network" styles of computational modeling has begun
to develop a radically different vision of the computational structure of mind. Research in cognitive
neuroscience has begun to unearth the often-surprising ways in which real brains use their resources of
neurons and synapses to solve problems. And a growing wave of work on simple, real-world robotics
(for example, getting a robot cockroach to walk, seek food, and avoid dangers) is teaching us how
biological creatures might achieve the kinds of fast, fluent real-world action that are necessary to
survival. Where these researches converge we glimpse a new vision of the nature of biological
cognition: a vision that puts explicit data storage and logical manipulation in its place as, at most, a
secondary adjunct to the kinds of dynamics and complex response loops that couple real brains,
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bodies, and environments. Wild cognition, it seems, has (literally) no time for the filing cabinet.

Of course, not everyone agrees. An extreme example of the opposite view is a recent $50 million
attempt to instill commonsense understanding in a computer by giving it a vast store of explicit
knowledge. The project, known as CYC (short for "encyclopedia™), aims to handcraft a vast knowledge
base encompassing a significant fraction of the general knowledge that an adult human commands.
Begun in 1984, CYC aimed at encoding close to a million items of knowledge by 1994. The project was
to consume about two person-centuries of data-entry time. CYC was supposed, at the end of this time, to
"cross over': to reach a point where it could directly read and assimilate written texts and hence "self-
program™ the remainder of its knowledge base.



The most noteworthy feature of the CYC project, from my point of view, is its extreme faith in the
power of explicit symbolic representation: its faith in the internalization of structures built in the image
of strings of words in a public language. The CYC representation language encodes information in units
(“frames") such as the following:

Missouri

Capital: (Jefferson City)

Residents: (Andy, Pepa, Beth)
State of: (United States of America)

The example is simplified, but the basic structure is always the same. The unit has "slots" (the three
subheadings above), and each slot has as its value a list of entities. Slots can reference other units (for
example, the "residents™ slot can act as a pointer to another unit containing still more information, and
so on and so on). This apparatus of units and slots is augmented by a more powerful language (the CycL
Constraint language) that allows the expression of more complex logical relationships, such as "For all
items, if the item is an X then it has property Y." Reasoning in CYC can also exploit any of several
simple inference types. The basic idea, however, is to let the encoded knowledge do almost all the work,
and to keep inference and control structure simple and within the bounds of current technology. CYC's
creators, Douglas Lenat and Edward Feigenbaum
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(1992, p. 192), argue that the bottleneck for adaptive intelligence is knowledge, not inference or control.

The CYC knowledge base attempts to make explicit all the little things we know about our world but
usually wouldn't bother to say. CYC thus aims to encode items of knowledge we all have but seldom
rehearse—items such as the following (ibid., p. 197):

Most cars today are riding on four tires.
If you fall asleep while driving, your car will start to head out of your lane pretty soon.
If something big is between you and the thing you want, you probably will have to go around it.

By explicitly encoding a large fraction of this "consensus reality knowledge," CYC is supposed to reach
a level of understanding that will allow it to respond with genuine intelligence. It is even hoped that
CYC will use analogical reasoning to deal sensibly with novel situations by finding partial parallels
elsewhere in its vast knowledge base.



CYC is an important and ambitious project. The commonsense data base it now encodes will doubtless
be of great practical use as a resource for the development of better expert systems. But we should
distinguish two possible goals for CYC. One would be to provide the best simulacrum of commonsense
understanding possible within a fundamentally unthinking computer system. The other would be to
create, courtesy of the CYC knowledge base, the first example of a genuine artificial mind.

Nothing in the performance of CYC to date suggests that the latter is in the cards. CYC looks set to
become a bigger, fancier, but still fundamentally brittle and uncomprehending "expert system." Adding
more and more knowledge to CYC will not remedy this. The reason is that CYC lacks the most basic
kinds of adaptive responses to an environment. This shortcoming has nothing to do with the relative
paucity of the knowledge the system explicitly encodes. Rather, it is attributable to the lack of any fluent
coupling between the system and a real-world environment posing real-world problems of acting and
sensing. Even the lowly cockroach, as we shall see, displays this kind of fluent coupling—it displays a
version of the kind of robust, flexible, practical intelligence that most computer systems so profoundly
lack. Yet such a simple creature can hardly be
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accused of commanding a large store of explicitly represented knowledge! Thus, the CYC project, taken
as an attempt to create genuine intelligence and understanding in a machine, is absolutely,
fundamentally, and fatally flawed. Intelligence and understanding are rooted not in the presence and
manipulation of explicit, language-like data structures, but in something more earthy: the tuning of basic
responses to a real world that enables an embodied organism to sense, act, and survive.

This diagnosis is not new. Major philosophical critics of Al have long questioned the attempt to induce
intelligence by means of disembodied symbol manipulation and have likewise insisted on the
importance of situated reasoning (that is, reasoning by embodied beings acting in a real physical
environment). But it has been all too easy to attribute such doubts to some sort of residual
mysticism—to unscientific faith in a soul-like mental essence, or to a stubborn refusal to allow science
to trespass on the philosophers' favorite terrain. But it is now increasingly clear that the alternative to the
"disembodied explicit data manipulation™ vision of Al is not to retreat from hard science; it is to pursue
some even harder science. It is to put intelligence where it belongs: in the coupling of organisms and
world that is at the root of daily, fluent action. From CYC to cycle racing: such is the radical turn that
characterizes the new sciences of the embodied mind.

Take, for example, the humble cockroach. The roach is heir to a considerable body of cockroach-style
commonsense knowledge. At least, that is how it must appear to any theorist who thinks explicit
knowledge is the key to sensible-looking real-world behavior! For the roach is a formidable escape
artist, capable of taking evasive action that is shaped by a multitude of internal and external factors.
Here is a brief list, abstracted from Ritzmann's (1993) detailed study, of the escape skills of the
American cockroach, Periplaneta americana:



The roach senses the wind disturbance caused by the motion of an attacking predator.

It distinguishes winds caused by predators from normal breezes and air currents.

It does not avoid contact with other roaches.

When it does initiate an escape motion, it does not simply run at random. Instead, it takes into account
its own initial orientation, the presence of
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obstacles (such as walls and corners), the degree of illumination, and the direction of the wind.

No wonder they always get away! This last nexus of contextual considerations, as Ritzmann points outs,
leads to a response that is much more intelligent than the simple "sense predator and initiate random
run" reflex that cockroach experts (for such there be) once imagined was the whole story. The additional
complexity is nicely captured in Ritzmann's descriptions of a comparably "intelligent" automobile. Such
a car would sense approaching vehicles, but it would ignore those moving in normal ways. If it detected
an impeding collision, it would automatically initiate a turn that took its own current state (various
engine and acceleration parameters) into account, took account of the road's orientation and surface, and
avoided turning into other dangers. A car with the intelligence of a cockroach, it seems clear, would be
way ahead of the current state of the automotive art. "Buy the car with the cockroach brain* does not
immediately strike you as a winner of an advertising slogan, however. Our prejudice against basic forms
of biological intelligence and in favor of bigger and fancier "filing cabinet/logic machines" goes all too
deep.

How does the roach manage its escapes? The neural mechanisms are now beginning to be understood.
Wind fronts are detected by two cerci (antenna-like structures located at the rear of the abdomen). Each
cercus is covered with hairs sensitive to wind velocity and direction. Escape motions are activated only
if the wind is accelerating at 0.6 m/s2 or more: this is how the creature discriminates ordinary breezes
from the lunges of attackers. The interval between sensing and response is very short: 58 milliseconds
for a stationary roach and 14 milliseconds for a walking roach. The initial response is a turn that takes
between 20 and 30 milliseconds (Ritzmann 1993, pp. 113-116). The basic neural circuitry underlying
the turn involves populations of neurons whose locations and connectivity are now quite well
understood. The circuitry involves more than 100 interneurons that act to modulate various turning
commands in the light of contextual information concerning the current location of the roach and the
state of the local environment. The basic wind information is carried by a population of ventral giant
interneurons, but the final activity builds in the results of modulation from many other neuronal
populations sensitive to these other contextual features.
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Confronted with the cockroach's impressive display of sensible escape routines, a theorist might
mistakenly posit some kind of stored quasilinguistic database. In the spirit of CYC, we might imagine
that the roach is accessing knowledge frames that include such items as these:

If you are being attacked, don't run straight into a wall.
If something big is between you and the food, try to go around it.
Gentle breezes are not dangerous.

As the philosopher Hubert Dreyfus (1991) and others have pointed out, the trouble is that real brains
don't seem to use such linguaform, text-like resources to encode skillful responses to the world. And this
Is just as well, since such strategies would require vast amounts of explicit data storage and search and
could thus not yield the speedy responses that real action requires. In fact, a little reflection suggests that
there would be no obvious end to the "commonsense” knowledge we would have to write down to
capture all that an adult human knows. Even the embodied knowledge of a cockroach would probably
require several volumes to capture in detail!

But how else might Al proceed? One promising approach involves what has become known as
autonomous-agent theory. An autonomous agent is a creature capable of survival, action, and motion in
real time in a complex and somewhat realistic environment. Many existing artificial autonomous agents
are real robots that are capable of insect-style walking and obstacle avoidance. Others are computer
simulations of such robots, which can thus move and act only in simulated, computer-based
environments. There are disputes between researchers who favor only real-world settings and real robots
and researchers who are happy to exploit "mere" simulations, but the two camps concur in stressing the
need to model realistic and basic behaviors and in distrusting overintellectualized solutions of the
"disembodied explicit reasoning" stripe.

With this general image of autonomous-agent research in mind, let us return very briefly to our hero, the
cockroach. Randall Beer and Hillel Chiel have created plausible computer and robot simulations of
cockroach locomotion and escape. In modeling the escape response, Beer and Chiel set out to develop
an autonomous-agent model highly constrained by ethological and neuroscientific data. The goal was,
thus,
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to stay as close to the real biological data as is currently possible. To this end, they combined the
autonomous-agent methodology with neural-network-style modeling. They also constrained this
computational model in ways consistent with what is known about the actual neural organization of (in
this case) the cockroach. They used a neural net to control the body of a simulated insect (Beer and
Chiel 1993). The net circuitry was constrained by known facts about the neural populations and
connectivities underlying the escape response in real cockroaches. After training, the neural network
controller was able to reproduce in the simulated insect body all the main features of the escape response
discussed earlier. In the chapters that follow, we shall try to understand something of how such
successes are achieved. We shall see in detail how the types of research just sketched combine with
developmental, neuroscientific, and psychological ideas in ways that can illuminate a wide range of both
simple and complex behaviors. And we shall probe the surprising variety of adaptive strategies available
to embodied and environmentally embedded agents—beings that move and that act upon their worlds.

These introductory comments set out to highlight a fundamental contrast: to conjure the disembodied,
atemporal intellectualist vision of mind, and to lay beside it the image of mind as a controller of
embodied action. The image of mind as controller forces us to take seriously the issues of time, world,
and body. Controllers must generate appropriate actions, rapidly, on the basis of an ongoing interaction
between the body and its changing environment. The classical Al planning system can sit back and take
its time, eventually yielding a symbolically couched description of a plausible course of action. The
embodied planning agent must take action fast—before the action of another agent claims its life.
Whether symbolic, text-like encodings have any role to play in these tooth-and-claw decisions is still
uncertain, but it now seem clear that they do not lie at its heart.

The route to a full computational understanding of mind is, to borrow a phrase from Lenat and
Feigenbaum, blocked by a mattress in the road. For many years, researchers have swerved around the
mattress, tried to finesse it away, done just about anything except get down to work to shift it. Lenat and
Feigenbaum think the mattress is knowledge—that the puzzles of mind will fall away once a nice big
knowledge base, complete with
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explicit formulations of commonsense wisdom, is in place. The lessons of wild cognition teach us
otherwise. The mattress is not knowledge but basic, real-time, real-world responsiveness. The cockroach
has a kind of common sense that the best current artificial systems lack—no thanks, surely, to the
explicit encodings and logical derivations that may serve us in a few more abstract domains. At root, our
minds too are organs for rapidly initiating the next move in real-world situations. They are organs
exquisitely geared to the production of actions, laid out in local space and real time. Once mind is cast as
a controller of bodily action, layers upon layers of once-received wisdom fall away. The distinction
between perception and cognition, the idea of executive control centers in the brain, and a widespread
vision of rationality itself are all called into question. Under the hammer too is the methodological
device of studying mind and brain with scant regard for the properties of the local environment or the
opportunities provided by bodily motion and action. The fundamental shape of the sciences of the mind
Is in a state of flux. In the chapters to follow, we will roam the landscape of mind in the changing of the
light.



I
Outing the Mind

Well, what do you think you understand with? With your head? Bah!
—Nikos Kazantzakis, Zorba the Greek

Ninety percent of life is just being there.
—Woody Allen
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1
Autonomous Agents: Walking on the Moon

1.1 Under the Volcano 1

In the summer of 1994, an eight-legged, 1700-pound robot explorer named Dante 11 rapelled down a
steep slope into the crater of an active volcano near Anchorage, Alaska. During the course of a six-day
mission, Dante Il explored the slope and the crater bed, using a mixture of autonomous (self-directed)
and external control. Dante 11 is one product of a NASA-funded project, based at Carnegie Mellon
University and elsewhere, whose ultimate goal is to develop truly autonomous robots for the purpose of
collecting and transmitting detailed information concerning local environmental conditions on other
planets. A much smaller, largely autonomous robot is expected to be sent to Mars in 1996, and the
LunaCorp lunar rover, which is based on Dante Il software, has a reserved spot on the first commercial
moon shot, planned for 1997.

The problems faced by such endeavors are instructive. Robots intended to explore distant worlds cannot
rely on constant communication with earth-based scientists—the time lags would soon lead to disaster.
Such robots must be programmed to pursue general goals by exploring and transmitting information. For
long missions, they will need to replenish their own energy supplies, perhaps by exploiting solar power.
They will need to be able to function in the face of unexpected difficulties and to withstand various
kinds of damage. In short, they will have to satisfy many (though by no means all) of the demands that
nature made on evolving mobile organisms.

The attempt to build robust mobile robots leads, surprisingly quickly, to a radical rethinking of many of
our old and comfortable ideas about the nature of adaptive intelligence.
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1.2 The Robots' Parade
Elmer and Elsie

The historical forebears of today's sophisticated animal-like robots (sometimes called "animats") were a
pair of cybernetic "turtles™ built in 1950 by the biologist W. Grey Walter. The "turtles"—named Elmer
and Elsie 2—used simple light and touch sensors and electronic circuitry to seek light but avoid intense
light. In addition, the turtles each carried indicator lights, which came on when their motors were
running. Even such simple onboard equipment led to thought-provoking displays of behavior, especially
when Elmer and Elsie interacted both with each other (being attracted by the indicator lights) and with
the local environment (which included a few light sources which they would compete to be near, and a
mirror which led to amusing, self-tracking "dancing™). In a strange way, the casual observer would find
it easier to read life and purpose into the behavior of even these shallow creations than into the

disembodied diagnostics of fancy traditional expert systems such as MYCIN.3
Herbert

One of the pioneers of recent autonomous-agent research is Rodney Brooks of the MIT Mobile Robot
Laboratory. Brooks's mobile robots (“mobots") are real robots capable of functioning in messy and
unpredictable real-world settings such as a crowded office. Two major characteristics of Brooks's
research are the use of horizontal microworlds and the use of activity-based decompositions within each
horizontal slice.

The contrast between horizontal and vertical microworlds is drawn in Clark 1989 and, in different terms,
in Dennett 1978b. The idea is simple. A microworld is a restricted domain of study: we can't solve all

the puzzles of intelligence all at once. A vertical microworld is one that slices off a small piece of human-
level cognitive competence as an object of study. Examples include playing chess, producing the past-
tense forms of English verbs, and planning a picnic, all of which have been the objects of past Al
programs. The obvious worry is that when we human beings solve these advanced problems we may

well be bringing to bear computational resources shaped by the other, more basic needs for which
evolution equipped our ancestors. Neat, design-oriented solutions to these recent
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problems may thus be quite unlike the natural solutions dictated by the need to exploit existing
machinery and solutions. We may be chess masters courtesy of pattern-recognition skills selected to
recognize mates, food, and predators. A horizontal microworld, in contrast, is the complete behavioral
competence of a whole but relatively simple creature (real or imaginary). By studying such creatures, we
simplify the problems of human-level intelligence without losing sight of such biological basics as real-
time response, integration of various motor and sensory functions, and the need to cope with damage.

Brooks (1991, p. 143) lays out four requirements for his artificial creatures:

A creature must cope appropriately and in a timely fashion with changes in its dynamic environment.
A creature should be robust with respect to its environment. ...

A creature should be able to maintain multiple goals. ...

A creature should do something in the world; it should have some purpose in being.

Brooks's "creatures™ are composed of a number of distinct activity-producing subsystems or "layers."
These layers do not create and pass on explicit, symbolic encodings or recodings of inputs. Instead, each
layer is itself a complete route from input to action. The "communication™ between distinct layers is
restricted to some simple signal passing. One layer can encourage, interrupt, or override the activity of
another. The resultant setup is what Brooks calls a "subsumption architecture” (because layers can
subsume one another's activity but cannot communicate in more detailed ways).

A creature might thus be composed of three layers (Brooks 1991, p. 156):

Layer 1: Object avoidance via a ring of ultrasonic sonar sensors. These cause the mobot to halt if an
object is dead ahead and allow reorientation in an unblocked direction.

Layer 2: If the object avoidance layer is currently inactive, an onboard device can generate random
course headings so the mobot "wanders."

Layer 3: This can surpass the wander layer and instead set up a distant goal to take the mobot into a
whole new locale.
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A key feature of the methodology is that layers can be added incrementally, each such increment
yielding a whole, functional creature. Notice that such creatures do not depend on a central reservoir of
data or on a central planner or reasoner. Instead, we see a "collection of competing behaviors"
orchestrated by environmental inputs. There is no clear dividing line between perception and cognition,
no point at which perceptual inputs are translated into a central code to be shared by various onboard
reasoning devices. This image of multiple, special-purpose problem solvers orchestrated by
environmental inputs and relatively simple kinds of internal signaling is, | shall argue in a later chapter,
a neuroscientifically plausible model even of more advanced brains.

Herbert, 4 built at the MIT Mobot Lab in the 1980s, exploits the kind of subsumption architecture just
described. Herbert's goal was to collect empty soft-drink cans left strewn around the laboratory. This
was not a trivial task; the robot had to negotiate a cluttered and changing environment, avoid knocking
things over, avoid bumping into people, and identify and collect the cans. One can imagine a classical
planning device trying to solve this complex real-world problem by using rich visual data to generate a
detailed internal map of the present surroundings, to isolate the cans, and to plan a route. But such a
solution is both costly and fragile—the environment can change rapidly (as when someone enters the
room), and rich visual processing (e.g. human-level object and scene recognition) is currently beyond
the reach of any programmed system.

Subsumption architectures, as we saw, take a very different approach. The goal is to have the complex,
robust, real-time behavior emerge as the result of simple interactions between relatively self-contained
behavior-producing subsystems. These subsystems are, in turn, controlled rather directly by properties
of the encountered environment.2 There is no central control or overall plan. Instead, the environment
itself will guide the creature, courtesy of some basic behavioral responses, to success. In Herbert's case,
these simple behaviors included obstacle avoidance (stopping, reorienting, etc.) and locomotion
routines. These would be interrupted if a table-like outline was detected by a simple visual system. Once
Herbert was beside a table, the locomotion and obstacle-avoidance routines ceded control to other
subsystems that swept the table with a laser and a video camera. Once the basic outline of a can was
detected, the
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robot would rotate until the can-like object was in the center of its field of vision. At this point, the
wheels stopped and a robot arm was activated. The arm, equipped with simple touch sensors, gently
explored the table surface ahead. When Herbert encountered the distinctive shape of a can, grasping
behavior ensued, the can was collected, and the robot moved on.

Herbert is thus a simple "creature” that commands no stored long-term plans or models of its
environment. Yet, considered as an artificial animal foraging for cans in the sustaining niche provided
by the Mobot Lab ecosystem, Herbert exhibits a kind of simple adaptive intelligence in which sensors,
onboard circuitry, and external environment cooperate to ensure success.

Attila

Rodney Brooks believes that robots smaller and more flexible than the lumbering Dante will better serve
the needs of extraterrestrial exploration. Attila 8 weighs just 3 % pounds and uses multiple special-
purpose "minibrains" (“finite-state machines") to control a panoply of local behaviors which together
yield skilled walking: moving individual legs, detecting the forces exerted by the terrain so as to
compensate for slopes, and so on. Attila also exploits infrared sensors to detect nearby objects. It is able
to traverse rough terrain, and even to stand up again if it should fall on its back. Rodney Brooks claims
that Attila already embodies something close to insect-level intelligence.

Periplaneta Computatrix

This is the simulated cockroach mentioned above. Beer and Chiel (1993) describe a neural-network
controller for hexapod locomotion. Each leg has a mini-controller that exploits a "pacemaker" unit—an
idealized model neuron whose output oscillates rhythmically. The unit will fire at intervals determined
by the tonic level of excitation from a command neuron and any additional inputs it receives. The idea,
borrowed from a biological model developed by K. G. Pearson (1976), is to give each leg its own
rhythmic-pattern generator but then to factor in modulatory local influences involving the different
sensory feedbacks from each leg as the insect traverses uneven terrain. Coordination between legs is
achieved by
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Figure 1.1 The first hexapod robot, built by Ken Espenschied

at Case Western Reserve University under the supervision of
Roger Quinn. Source: Quinn and Espenschied 1993. Reproduced by
kind permission of K. Espenschied, R. Quinn, and Academic Press.
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Figure 1.2 The second hexapod robot, built by Ken Espenschied
at Case Western Reserve University under the supervision of
Roger Quinn. Photograph courtesy of Randall Beer.
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inhibitory links between neighboring pattern generators. Each leg has three motor neurons: one controls
back swing, one controls forward swing, and one causes the foot to raise. The overall control circuit is
again fully distributed. There is no central processor that must orchestrate a response by taking all
sensory inputs into account. Instead, each leg is individually "intelligent," and simple inhibitory linkages
ensure globally coherent behavior. Different gaits emerge from the interactions between different levels
of tonic firing of the pacemaker units (the pattern generators) and local sensory feedback. The robot will
adopt a tripod gait at high firing frequencies and will switch to a metachronal gait at lower ones. In a
tripod gait, the front and back legs on one side swing in phase with the middle legs on the other side; in
a metachronal gait, each leg begins its swing just after the leg behind it, in a kind of wave or ripple
motion.

Although designed and tested as a pure computer simulation, the locomotion circuit has been used in a
real robot body and has proved robust in the real world of friction, inertia, noise, delays, and so on An
early example of a real-world hexapod robot is shown is figure 1.1 and is further discussed in Beer and
Chiel 1993 and in Quinn and Espenschied 1993. The locomotion circuit employed is also able (because
it is so highly distributed) to preserved most of its functionality after damage to individual neurons or
connections (Beer et al. 1992). Despite the complexity of the behavior it produces, the locomotion
circuit itself is quite modest—just 37 "neurons," strategically deployed and interconnected. Nonetheless,
videos of the robot hexapod and its successors provide an enthralling spectacle. One sequence shows a
somewhat more complex successor robot (figure 1.2) tentatively making its way across the rough terrain
provided by some fragments of polystyrene packing. A foot is extended and gently lowered. Finding no
purchase (because of the local terrain), it is retracted and then placed in a slightly different location.
Eventually a suitable foothold is discovered and the robot continues on its way. Such tentative
exploratory behavior has all the flavor of real, biological intelligence.

Brachiation Robot

Brachiation (figure 1.3) is the branch-to-branch swinging motion that apes use to traverse highly
forested terrain. Saito and Fukuda (1994) describe a robot device that learns to brachiate using a neural-
network
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Figure 1.3 The brachiation of a gibbon. Source: Saito and Fukuda 1994.

Used by kind permission of F. Saito, T. Fukuda, and MIT Press.

Figure 1.4 A two-link brachiation robot.
Source: Saito and Fukuda 1994.
Used by kind permission of F. Saito,
T. Fukuda, and MIT Press.
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controller. The task is especially interesting since it incorporates a learning dimension and addresses a
highly time-critical behavior.

The robot uses a form of neural-network learning called connectionist Q-learning. 7 Q-learning involves
attempting to learn the value of different actions in different situations. A Q-learning system must have a
delimited set of possible actions and situations and must be provided with a reward signal informing it
of the value (goodness) of a chosen action in the situation it is facing. The goal is to learn a set of
situation-action pairings that will maximize success relative to a reward signal. Saito and Fukuda
demonstrate that such techniques enable an artificial neural network to learn to control a two-link real-
world brachiation robot (figure 1.4). The fully trained brachiation robot can swing successfully from
"branch™ to "branch,” and if it misses it is able to use its momentum to swing back and try again.

Cog

COG (Brooks 1994; Brooks and Stein 1993) must surely be the most ambitious of all the "New
Robotics" projects undertaken so far. The project, spearheaded by Rodney Brooks, aims to create a high-
functioning humanoid robot. The human-size robot (figure 1.5) is not mobile; it is, however, able to
move its hands, arms, head, and eyes. It is bolted to a tabletop, but it can swivel at the hips. There are 24
individual motors underpinning these various degrees of freedom, and each motor has a processor
devoted solely to overseeing its operation (in line with the general mobot ethos of avoiding centralized
control). The arms incorporate springs, which allow some brute-mechanical smoothing. Most of the
motors (excluding the eye motors) incorporate heat sensors that allow COG to gather information about
its own current workings by telling it how hard various motors are working—a kind of robot version of
the kinesthetic sense that tells us how our body parts are oriented in space. Each eye each comprises two
cameras; one has a wide field of view with low resolution, and the other has a narrow field of view with
high resolution. The cameras can move around surveying a visual scene, with the narrow-field camera
mimicking the mammalian fovea. COG also receives audio information via four microphones. All this
rich incoming data is processed by a "brain" composed of multiple submachines ("nodes,"
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Figure 1.5 Three views of the robot COG. Photographs kindly provided by Rodney Brooks.
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each with a megabyte of ROM and RAM and a dedicated operating system), which are capable of
communicating with one another in some restricted ways. COG's brain is thus itself a multi-processor
system, and COG's nervous system also includes other "intelligent™ devices (such as the dedicated motor
processors). The overall setup thus reflects much of the guiding philosophy of Brooks's work with robot
insects, but it is sufficiently complex to bring new and pressing problems to the fore. Familiar features
include the lack of any central memory shared by all processors, the lack of any central executive
controls, the restricted communications between subdevices, and the stress on solving real-time
problems involving sensing and acting. The new problems all center around the need to press coherent
behaviors from such a complex system without falling back on the old, impractical methods of serial
planning and central control. The ingenious strategies and tricks that enable embodied systems to
maintain coherence while exploiting multiple, special-purpose, quasi-independent problem-solving
routines (addressed in later chapters) shed light on the roles of language, culture, and institutions in
empowering human cognition. For the moment, however, let us back off and try to extract some general
morals from our parade of artificial critters.

1.3 Minds without Models

The New Robotics revolution rejects a fundamental part of the classical image of mind. It rejects the
image of a central planner that is privy to all the information available anywhere in the system and
dedicated to the discovery of possible behavioral sequences that will satisfy particular goals. The trouble
with the central planner is that is profoundly impractical. It introduces what Rodney Brooks aptly termed
a "representational bottleneck™ blocking fast, real-time response. The reason is that the incoming
sensory information must be converted into a single symbolic code so that such a planner can deal with
it. And the planners' output will itself have to be converted from its propriety code into the various
formats needed to control various types of motor response. These steps of translation are time-
consuming and expensive.

Acrtificial critters like Herbert and Attila are notable for their lack of central planning. In its place the
subsumption architecture puts multiple
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quasi-independent devices, each of which constitutes a self-contained pathway linking sensory input to
action. As a result, the behaviors of such systems are not mediated by any integrated knowledge base
depicting the current state of the overall environment. Such knowledge bases are often called "detailed
world models," and it is a recurring theme of the new approaches that they achieve adaptive success
without the use of such models.

It would be easy, however, to overstate this difference. A major danger attending any revolutionary
proposal in the sciences is that too much of the "old view" may be discarded—that healthy babies may
be carried away by floods of bathwater. This very danger attends, | believe, the New Roboticists’
rejection of internal models, maps, and representations. Taken only as an injunction to beware the costs
of central, integrated, symbolic models, the criticism is apt and important. But taken as a wholesale
rejection of inner economies whose complexities include multiple action-centered representations and
multiple partial world models, it would be a mistake for at least two reasons.

First, there is no doubt that the human brain does at times integrate multiple sources of information. The
area that governs visual saccades (the rapid motion of the high-resolution fovea to a new target) is able
to respond to multiple sensory inputs—we can saccade to the site of peripherally detected motion, to the
origin of a sound, or to track an object detected only by touch. In addition, we often combine modalities,
using touch, sight, and sound in complex interdependent loops where the information received in each
modality helps tune and disambiguate the rest (as when we confront a familiar object in the dark corner
of a cupboard).

Second, the presence of internal models intervening between input and output does not always constitute
a time-costly bottleneck. Motor emulation provides a clean and persuasive example. Consider the task of
reaching for a cup. One "solution" to a reaching problem is ballistic reaching. As its name implies, this
style of reaching depends on a preset trajectory and does not correct for errors along the way. More
skilled reaching avails itself of sensory feedback to subtly correct and guide the reaching along the way.
One source of such feedback is proprioception, the inner sense that tells you how your body (your arm,
in this case) is located in space. But proprioceptive signals must travel back from bodily peripheries to
the brain, and this takes time—too much time, in fact, for



Page 23

the signals to be used to generate very smooth reaching movements. To solve the problem, the brain
may use a trick (widely used in industrial control systems) called motor emulation. An emulator is a
piece of onboard circuitry that replicates certain aspects of the temporal dynamics of the larger system.
It takes as input a copy of a motor command and yields as output a signal identical in form to one
returning from the sensory peripheries. That is, it predicts what the proprioceptive feedback should be. If
the device is reliable, these predictions can be used instead of the real sensory signals so as to generate
faster error-correcting activity. Such emulators are the subject of numerous detailed theoretical
treatments (e.g. Kawato et al. 1987; Dean et al. 1994) that show how simple neural-network learning can
yield reliable emulators and speculate on how such emulators may be realized in actual neural circuitry.

Such a motor emulator is not a bottleneck blocking real-time success. On the contrary, it facilitates real-
time success by providing a kind of "virtual feedback" that outruns the feedback from the real sensory
peripheries. Thus, an emulator provides for a kind of motor hyperacuity, enabling us to generate
smoother and more accurate reaching trajectories than one would think possible in view of the distances
and the speed of conduction governing the return of sensory signals from bodily peripheries. Yet an
emulator is undoubtedly a kind of inner model. It models salient aspects of the agents' bodily dynamics,
and it can even be deployed in the absence of the usual sensory inputs. But it is a partial model dedicated
to a specific class of tasks. It is thus compatible with the New Roboticists' skepticism about detailed and
centralized world models and with their stress on real-time behavioral success. It also underlines the
intrinsic importance of the temporal aspects of biological cognition. The adaptive role of the emulator
depends as much on its speed of operation (its ability to outrun the real sensory feedback) as on the
information it encodes.

Carefully understood, the first moral of embodied cognition is thus to avoid excessive world modeling,
and to gear such modeling as is required to the demands of real-time, behavior-producing systems.

1.4 Niche Work

The second moral follows closely from the first. It concerns the need to find very close fits between the
needs and lifestyles of specific systems (be
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they animals, robots, or humans) and the kinds of information-bearing environmental structures to which
they will respond. The idea is that we reduce the information-processing load by sensitizing the system
to particular aspects of the world—aspects that have special significance because of the environmental
niche the system inhabits.

We saw something of this in the case of Herbert, whose "niche" is the Coke-can-littered environment of
the MIT Mobile Robot Laboratory. One fairly reliable fact about that niche is that cans tend to
congregate on table tops. Another is that cans, left to their own devices, do not move or attempt to
escape. In view of these facts, Herbert's computational load can be substantially reduced. First, he can
use low-resolution cues to isolate tables and home in on them. Once he is at a table, he can begin a
special-purpose can-seeking routine. In seeking cans, Herbert need not (and in fact cannot) form internal
representations of the other objects on the table. Herbert's "world" is populated only by obstacles, table
surfaces, and cans. Having located a can, Herbert uses physical motion to orient himself in a way that
simplifies the reaching task. In all these respects (the use of motion, the reliance on easily detected cues,
and the eschewal of centralized, detailed world models), Herbert exemplifies niche-dependent sensing.

The idea of niche-dependent sensing is not new. In 1934 Jakob VVon Uexkull published a wonderful
monograph whose title translates as A Stroll through the Worlds of Animals and Men: A Picture Book of
Invisible Worlds. Here, with almost fairy-tale-like eloquence and clarity, Von Uexkull introduces the
idea of the Umwelt, defined as the set of environmental features to which a given type of animal is
sensitized. He describes the Umwelt of a tick, which is sensitive to the butyric acid found on mammalian
skin. Butyric acid, when detected, induces the tick to loose its hold on a branch and to fall on the animal.
Tactile contact extinguishes the olfactory response and initiates a procedure of running about until heat
Is detected. Detection of heat initiates boring and burrowing. It is impossible to resist quoting Von
Uexkull at some length:

The tick hangs motionless on the tip of a branch in a forest clearing. Her position gives her the chance to drop
on a passing mammal. Out of the whole environment, no stimulus affects her until a mammal approaches,
whose blood she needs before she can bear her young.
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And now something quite wonderful happens. Of all the influences that emanate from the mammal's body, only
three become stimuli and those in definite sequence. Out of the vast world which surrounds the tick, three shine
forth from the dark like beacons, and serve as guides to lead her unerringly to her goal. To accomplish this, the
tick, besides her body with its receptors and effectors, has been given three receptor signs, which she can use as
sign stimuli. And these perceptual cues prescribe the course of her actions so rigidly that she is only able to
produce corresponding specific effector cues.

The whole rich world around the tick shrinks and changes into a scanty framework consisting, in essence, of
three receptor cues and three effector cues—her Umwelt. But the very poverty of this world guarantees the
unfailing certainty of her actions, and security is more important than wealth. (ibid., pp. 11-12)

Von Uexkull's vision is thus of different animals inhabiting different effective environments. The
effective environment is defined by the parameters that matter to an animal with a specific lifestyle. The
overarching gross environment is, of course, the physical world in its full glory and intricacy.

VVon Uexkull's monograph is filled with wonderful pictures of how the world might seem if it were
pictured through the lens of Umwelt-dependent sensing (figures 1.6—1.8). The pictures are fanciful, but
the insight is serious and important. Biological cognition is highly selective, and it can sensitize an
organism to whatever (often simple) parameters reliably specify states of affairs that matter to the
specific life form. The similarity between the operational worlds of Herbert and the tick is striking: Both
rely on simple cues that are specific to their needs, and both profit by not bothering to represent other
types of detail. It is a natural and challenging extension of this idea to wonder whether the humanly
perceived world is similarly biased and constrained. Our third moral claims that it is, and in even more
dramatic ways than daily experience suggests.

1.5 A Feel for Detail?

Many readers will surely agree that even advanced human perception is skewed toward the features of
the world that matter with respect to human needs and interests. The last and most speculative of our
short list of morals suggests that this skewing penetrates more deeply than we ever imagined. In
particular, it suggests that our daily perceptual experiences
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Figure 1.6 The environment and Umwelt of a scallop.
Based on figure 19 of Von Uexkull 1934; adapted by Christine
Clark, with permission of International Universities Press.
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Figure 1.7 The Umwelt of an astronomer.
Based on figure 21 of Von Uexkull 1934;
adapted by Christine Clark, with permission
of International Universities Press.

may mislead us by suggesting the presence of world models more durable and detailed than those our
brains actually build. This somewhat paradoxical idea requires careful introduction. 8

Consider the act of running to catch a ball. This is a skill which cricketers and baseball players routinely
exhibit. How is it done? Common experience suggests that we see the ball in motion, anticipate its
continuing trajectory, and run so as to be in a position to intercept it. In a sense this is correct. But the
experience (the "phenomenology") can be misleading if one believes that we actively compute such
trajectories. Recent research? suggests that a more computationally efficient strategy is to simply run so
that the acceleration of the tangent of elevation of gaze from fielder to ball is kept at zero. Do this and
you will intercept the ball before
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Figure 1.8 The environment and Umwelt of a honeybee.
Based on figure 53 of Von Uexkull 1934; adapted by Christine
Clark, with permission of International Universities Press.
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it hits the ground. Videotaped sequences of real-world ball interception suggest that humans do
indeed—unconsciously—use this strategy. Such a strategy avoids many computational costs by isolating
the minimal and most easily detectable parameters that can support the specific action of interception.



In a similar vein, an important body of research known as animate vision (Ballard 1991; see also P. S.
Churchland et al. 1994) suggests that everyday visually guided problem solving may exploit a multitude
of such tricks and special-purpose routines. Instead of seeing vision as the transformation of incoming
light signals into a detailed model of a three-dimensional external world, animate-vision research
investigates ways in which fast, fluent, adaptive responses can be supported by less computationally
intensive routines: routines that intertwine sensing with acting and moving in the world. Examples
include the use of rapid and repeated saccades to survey a visual scene and to extract detailed
information only at selected foveated locations, and the exploitation of coarser cues (such as color) that
can be detected at the low-resolution peripheries.

The case of rapid scanning is especially instructive. Human eyes exploit a small area (less than 0.01
percent of the overall visual field) of very high resolution. Visual saccades move this high-resolution
window from point to point in a visual scene. Yarbus (1967) showed that these saccades can be
intelligent in the sense that a human subject faced with an identical scene will saccade around in very
different ways so as to carry out different tasks. Such saccades are very fast (about three per second) and
often visit and revisit the same location. In one of Yarbus's studies, subjects were shown a picture of a
room with some people in it and asked to either give the ages of the people, guess what activity they had
previously been engaged in, or remember the locations of the people and objects. Very different patterns
of saccade were identified, depending on which task was specified.

Frequent saccades enable us, animate-vision researchers claim, to circumvent the need to build enduring
and detailed models of our visual surroundings. Instead, to borrow a slogan from Rodney Brooks, we
can use the world as its own best model and visit and revisit the real-world scene, sampling it in detail at
specific locations as required. The costly business of maintaining and updating a full-scale internal
model of a
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three-dimensional scene is thus avoided. Moreover, we can sample the scene in ways suited to the
particular needs of the moment.

For all that, it certainly seems to us as if we are usually in command of a full and detailed three-
dimensional image of the world around us. But this, as several recent authors have pointed out, 10 may
be a subjective illusion supported by our ability to rapidly visit any part of the scene and then retrieve
detailed (but not enduring) information from the foveated region. Ballard (1991, p. 59) comments that
"the visual system provides the illusion of three-dimensional stability by virtue of being able to execute
fast behaviors."
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A useful analogyll involves the sense of touch. Back in the 1960s, Mackay raised the following
guestion: Imagine you are touching a bottle, with your eyes shut and your fingertips spread apart. You
are receiving tactile input from only a few spatially separated points. Why don't you have the sensation
of feeling an object with holes in it, corresponding to the spaces between your fingers? The reason is, in
a sense, obvious. We use touch to explore surfaces, and we are accustomed to moving our fingertips so
as to encounter more surface—especially when we know that what we are holding is a bottle. We do not
treat the spaces between the sensory inputs as indicating spaces in the world, because we are used to
using the senses as exploratory tools, moving first to one point and then to the next. Reflection on this
case led one researcher to suggest that what we often think of as the passive sensory act of "feeling the
bottle" is better understood as an action-involving cycle in which fragmentary perceptions guide further
explorations, and that this action-involving cycle is the basis for the experience of perceiving a whole
bottle.12 This radical view, in which touch is cast as an exploratory tool darting hither and thither so as
probe and reprobe the local environment, extends quite naturally to vision and to perception in general.

The suspicion that vision is not all it appears to be is wonderfully expressed by Patricia Churchland, V.
S. Ramachandran, and Terrence Sejnowski in their 1994 paper "A critique of pure vision." In place of
"picture perfect” internal representation, they too propose that we extract only a sequence of partial
representations—a conjecture they characterize as the "visual semi-worlds™ or "partial representations
per glimpse" hypothesis. Support for such a hypothesis, they suggest, comes
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not only from general computational considerations concerning the use of frequent saccades and so on
but also from some striking psychological experiments. 13

The experiments involved using computer displays that "tricked" the subjects by altering the visual
display during saccadic eye movements. It turned out that changes made during saccades were rather
seldom detected. At these critical moments, whole objects can be moved, colors altered, and objects
added, all while the subject (usually) remains blissfully unaware. Even more striking, perhaps, is related
research in which a subject is asked to read text from a computer screen. The target text is never all
present on the screen at once. Instead, the real text is restricted to a display of (for typical subjects) 17 or
18 characters. This text is surrounded by junk characters which do not form real words. But (and here is
the trick) the window of real text moves along the screen as the subject's eyes scan from left to right.
The text is nonrepetitive, as the computer program ensures that proper text systematically unfolds in
place of the junk. (But, since it is a moving window, new junk appears where real text used to be.) When
such a system is well calibrated to an individual subject, the subject does not notice the presence of the
junk! Moreover, the subjective impression is quite distinctly one of being confronted with a full page of
proper text stretching to the left and right visual peripheries. In these cases, at least, we can say with
confidence that the experienced nature of the visual scene is a kind of subjective illusion caused by the
use of rapid scanning and a small window of resolution and attention.
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1.6 The Refined Robot

Rodney Brooks's Mobile Robot Laboratory once had the motto "Fast, cheap, and out of control.” Such,
indeed, is the immediate message of the New Robotics vision. Without central planning or even the use
of a central symbolic code, these artificial systems fluently and robustly navigate the real world. They do
so in virtue of carefully orchestrated couplings between relatively independent onboard devices and
selected aspects of the environment (the robot's Umwelt, if you will). Despite appearances, it now seems
conceivable that much of human intelligence is based on similar environment-specific tricks and
strategies, and that we too may not
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command any central, integrated world model of the traditional style. Thus, to the extent that we take the
broad morals of the New Robotics to heart, we are confronted by two immediate and pressing problems.

The first is a problem of discovery. If we avoid the easy image of the central planner cogitating over text-
like data structures, and if we distrust our intuitions concerning what types of information we are
extracting from sensory data, how should we proceed? How can we even formulate hypotheses
concerning the possible structure and operation of such unintuitive and fragmentary minds? Brooks and
others rely on developing a new set of intuitions—intuitions grounded in attention to specific behaviors
and organized around the general idea of a subsumption architecture. As we seek to tackle increasingly
complex cases, however, it is doubtful that this "handcrafting"” approach can succeed. In subsequent
chapters we shall investigate some ways of proceeding that seem less hostage to human intuitions:
working up from real neuroscientific and developmental data, relying more on getting robot systems to
learn for themselves, and even attempting to mimic genetic change so as to evolve generations of
progressively more refined robots. Look to nature, and let simulated nature takes its course!

The second problem is one of coherence. Both the power and the puzzle of New Robotics research lie in
the use of multiple, quasi-independent subsystems from which goal-directed behavior gracefully
emerges under normal ecological conditions. The power lies in the robust, real-time responsiveness of
such systems. The puzzle is how to maintain coherent behavior patterns as the systems grow more and
more complex and are required to exhibit a wider and wider variety of behaviors. One response to such a
problem is, of course, to renege on the basic vision and insist that for complex, advanced behaviors there
must be something more like a central symbolic planning system at work. We should not, however, give
up too easily. In the chapters that follow, we shall unearth a surprising number of further tricks and
strategies that may induce global coherence. Most of these strategies involve the use of some type of
external structure or "scaffolding” to mold and orchestrate behavior. Obvious contenders are the
immediate physical environment (recall Herbert) and our ability to actively restructure that environment
S0 as to better support and extend our natural problem-solving abilities. These strategies are especially
evi-
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dent in child development. Less obvious but crucially important factors include the constraining
presence of public language, culture, and institutions, the inner economy of emotional response, and the
various phenomena relating to group or collective intelligence. Language and culture, in particular,
emerge as advanced species of external scaffolding "designed" to squeeze maximum coherence and
utility from fundamentally short-sighted, special-purpose, internally fragmented minds. From its
beginnings in simple robotics, our journey will thus reach out to touch—and sometimes to
challenge—some of the most ingrained elements of our intellectual self-image. The Rational Deliberator
turns out to be a well-camouflaged Adaptive Responder. Brain, body, world, and artifact are discovered
locked together in the most complex of conspiracies. And mind and action are revealed in an intimate
embrace.



Page 35

2
The Situated Infant

2.1 1, Robot

Robot soda-can collectors, moon explorers, cockroaches—if all that sounded far from home, think
again. The emerging perspective on embodied cognition may also offer the best hope so far for
understanding central features of human thought and development. One especially promising arena is
the study of infancy. The New Roboticists' vision of mind on the hoof finds a natural complement in our
increasing understanding of how thought and action develop in children, for the roboticist and a growing
number of developmental psychologists are united in stressing the delicate interplay of brain, body, and
local environment in determining early cognitive success.

In fact (and to be historically fair), developmental psychologists were probably among the very first to
notice the true intimacy of internal and external factors in determining cognitive success and change. In
this respect, theorists such as Jean Piaget, James Gibson, Lev Vygotsky, and Jerome Bruner, although
differing widely in their approaches, actively anticipated many of the more radical-sounding ideas now
being pursued in situated robotics. 1 Nonetheless, ample scope remains for mutual illumination, since
each of the two camps commands a distinct set of conceptual and experimental tools and a distinct body
of data. Thus, the intellectual alliance between developmental psychology and the other sciences of the
embodied mind may prove to be one of the most exciting interdisciplinary ventures of the coming
decade.

This chapter explores five major landmarks along such a interdisciplinary frontier: the idea of action
loops that criss-cross the organism and
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its environment (section 2.2), a highly interactive view of the developmental process according to which
mind, body, and world act as equal partners (section 2.3); an image of biological cognition in which
problem solutions often emerge without central executive control (section 2.4); recognition of the major
role of external structures and support in enabling adaptive success and in pushing the envelope of
individual learning (section 2.5); and an increasing skepticism, rooted in all the above considerations,
concerning the ultimate value of the intuitive divisions between perception, action, and cognition
(section 2.6). Cognitive development, it is concluded, cannot be usefully treated in isolation from issues
concerning the child's physical embedding in, and interactions with, the world. A better image of child
cognition (indeed, of all cognition) depicts perception, action, and thought as bound together in a variety
of complex and interpenetrating ways.

2.2 Action Loops

Consider a jigsaw puzzle. One (unlikely) way to tackle such a puzzle would be to look very hard at a
piece and to try to determine by reason alone whether it will fit in a certain location. Our actual practice,
however, exploits a mixed strategy in which we make a rough mental determination and then physically
try out the piece to see if it will fit. We do not, in general, represent the detailed shape of a piece well
enough to know for certain if it is going to fit in advance of such a physical manipulation. Moreover, we
may physically rotate candidate pieces even before we try to fit them, so as to simplify even the more
"mentalistic” task of roughly assessing potential fit. (Recall Herbert's use of a similar procedure in which
self-rotation is used to fix a can into a canonical central location in the robot's visual field.) Completing
a jigsaw puzzle thus involves an intricate and iterated dance in which "pure thought™ leads to actions
which in turn change or simplify the problems confronting "pure thought.” This is probably the simplest

kind of example of the phenomena known as action loops. 2

Recent developmental research by Esther Thelen and Linda Smith suggests that such interplays between
thought and action may be so ubiquitous and so fundamental that these researchers suspect that all our
early
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knowledge is built "though the time-locked interactions of perceiving and acting in particular contexts"
(Thelen and Smith 1994, p. 217). To see what this means, consider the performance of infants on visual
cliffs. (A visual cliff is a vertical drop covered with a strong, rigid, transparent surface, such as
plexiglass.) Infants who are not yet able to crawl are demonstrably able to distinguish the shallow sides
of the cliff from the area beyond the dropoff. They show increased attention and interest, and
(surprisingly) they cry less on the deep side than on the shallow side. Older, more mobile infants
respond to the deep side in ways associated with fear (Campos et al. 1978). 3 Clearly, both groups of
infants can perceive the visual information specifying depth. The crucial difference seems to lie in how
that information is put to use—how it figures in the interplay between perception and action.

Further insight into this interplay is provided by recent work on infants' responses to slopes. In this
research, infants displaying different kinds of mobility (crawlers and walkers) were placed at the tops of
slopes of varying degrees of steepness. The walkers (14 months) were wary of slopes of about 20° and
more, and they either refused to descend or switched to a sliding mode. The crawlers dauntlessly
attempted slopes of 20° and more, and usually fell as a result. (They were always caught in time.)

Under closer scrutiny, however, a fascinating pattern emerges. As crawlers increased in experience, they
learned to avoid the steeper slopes. But at the point of transition, when the infants first begin to walk,
this hard-won knowledge seems to have disappeared. The early walkers had to learn about steep slopes
all over again. In one test, two-thirds of the new walkers "plunged without hesitation down all the steep

slopes, just as they did when they first encountered them as crawlers" (Thelen and Smith 1994, p. 220).4

This evidence suggests not only that infants learn about the world by performing actions but also that the
knowledge they acquire is itself often action-specific. Infants do not use their crawling experience to
acquire knowledge about slopes in general. Rather, they acquire knowledge about how slopes figure in
specific contexts involving action. Other findings concerning the context-specificity of infant knowledge

point in the same general direction.2
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This phenomenon is not restricted to infancy. Recent research on adults' mechanisms of perceptual
compensation reveals a similarly action-specific profile. Thach et al. (1992) present an example
involving perceptual adaptation under unusual conditions. & Thach and his colleagues studied human
adaptation to the wearing of special glasses that shift the image to the right or the left. It is well known
that the human perceptual system can learn to cope with such distortions. In fact, several experiments
show that subjects can even accommodate to lenses that invert the whole visual scene so that the wearer
sees an upside-down world. After wearing such glasses for a few days, subjects report sudden flips in
which aspects of the world reorient themselves properly. Of course, once such adaptation has taken
place, the subjects are dependent on the lenses—if they are removed, the world appears once again
inverted until readaptation occurs.

What Thach's group showed was that the adaptation in the case of the sideways-shifting lenses appears
to be specific to certain motor loops. Subjects were asked to throw darts at a board. At first they would
miss as a result of the sideways-shifting action of the glasses. In time, however, adaptation occurred and
they were able to aim as well as before. (In contrast with what happened in the experiments with lenses,
this adaptation had no experiential aspect: no "backshift" in the conscious visual image was reported.)
But this adaptation is, in most cases, quite motor-loop-specific. Asked to throw the darts underhand
instead of overhand or to use their nondominant hand, the subjects showed no comparable improvement.
Adaptation for dominant-arm, overhand throwing did not in any way carry over to the other cases. What
seems to have occurred was an adaptation restricted to the specific combination of gaze angle and
throwing angle used in the standard throw. What did not occur was a general, perceptual adaptation that
would provide "corrected input data” for use by any motor or cognitive subsystem.

Thach et al. have related their results to some quite specific and fascinating hypotheses about the role of
a particular neural structure—the cerebellum—in the learning of patterned responses to frequently
encountered stimuli. These conjectures fit well with our emerging picture, since they suggest that the old
view of the cerebellum as purely involved in motor tasks is misleading and that motor functions and
some "higher"
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cognitive functions may be intimately bound together in the brain. For now, however, it need only be
noted that some rethinking of the "passive"” image of our perceptual contact with the world may be in
order. In many cases, perception should not, it seems, be viewed as a process in which environmental
data is passively gathered. Instead, perception may be geared, from the outset, to specific action
routines. 7 The challenge, thus, is to develop "a theoretical framework that is, as it were, 'motocentric'
rather than "visuocentric" (P. S. Churchland et al. 1994, p. 60). Detailed microdevelopmental studies,
such as the work on slope negotiation, seem to offer a promising test bed on which to pioneer such a
radical reorientation.

2.3 Development without Blueprints

A blueprint is a highly detailed plan or specification of, for example, a car or a building. The simplest
(but usually the least satisfying and plausible) accounts of development depict the alteration and growth
of a child's cognitive capacities as the gradual unfolding of some genetically determined "blueprint™ for
cognitive change. Such accounts, which dominated during the 1930s and the 1940s,8 are neatly
described by Thelen and Smith (1994, p.6) as a vision of development as "a linear, stage-like
progression through a sequence of increasingly more functional behaviors, driven towards adult forms
by a grand plan (and scheduled by a grand timekeeper)." Such views are still with us, although in
increasingly sophisticated forms. For example, the gradual development of walking skills is explained as
an effect of maturationally determined increases in the processing speed of the brain allowing complex
motor control and integration (Zelazo 1984).

From the highly interactive perspective that we have been developing, however, such approaches may
be guilty of an all-too-common error. They take a complex phenomenon (e.g. the child's development of
walking) and look for a single determining factor. This is what Mitchel Resnick of the MIT Media Lab
calls "centralized thinking":

... people tend to look for the cause, the reason, the driving force, the deciding factor. When people observe
patterns and structures in the world (for example, the flocking patterns of birds or the foraging patterns of ants),
they often assume centralized causes where none exist. And when people try to create patterns or structure in
the world (for example, new organizations or new machines), they often impose centralized control when none
is needed. (Resnick 1994, p. 120)
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| have quoted this passage at length because it so perfectly captures a central message of our
investigations—a message that will recur again and again in this book: Complex phenomena exhibit a
great deal of self-organization. Bird flocks do not, in fact, follow a leader bird. Instead, each bird follows
a few simple rules that make its behavior depend on the behavior of its nearest few neighbors. The
flocking pattern emerges from the mass of these local interactions—it is not orchestrated by a leader, or
by any general plan represented in the heads of individual birds. In a similar vein, certain kinds of ants
forage by a process of "mass recruitment."” If an ant finds food, it returns to the nest and drops a
chemical marker (a pheromone) on its way. If another ant detects the trail, it will follow it to the food
source. This, in turn, leads the new ant to add to the chemical trail. The stronger trail will then be more
likely to attract yet another ant, which in turn finds food, adds to the chemical trail, and thus increases
the trail's potency. What we thus confront is an extended process of positive feedback that soon leads to
a massive concentration of activity, with hundreds of ants proceeding up and down the trail. The point is
that this organization is achieved by a few simple local "rules" that, in the presence of the food source

and the other ants, give rise to the apparently organized behavior. 2

Some recent studies of infant development suggest that it, too, may be best understood in terms of the
interactions of multiple local factors—factors that include, as equal partners, bodily growth,
environmental factors, brain maturation, and learning. There is no "blueprint™ for the behavior in the
brain, or in the genes—no more than there is a blueprint for flocking in the head of the bird.

To get the flavor of the proposal, consider the case of learning to walk. The gross data are as follows: A
newborn infant, when held suspended off the ground, performs well-coordinated stepping motions; at
about 2 months these stepping motions are lost; the motions reappear between 8 and 10 months as the
infant begins to support its weight on its feet; at about 12 months, independent walking appears.
According to a "grand plan, single factor" view, we would expect these transitions to be expressions of
the maturation or development of some central source—for example, the gradual capture of reflex-like
processes by a higher cognitive center (see Zelazo 1984). Microdevelopmental studies suggest, how-
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Figure 2.1 This 3-month-old infant was tested for upright stepping
with his feet on the table and then when submerged in warm water.
Source: Thelen and Smith 1994. Courtesy of E. Thelen, L. Smith, and MIT Press.

ever that the transitions are not centrally orchestrated. Instead, multiple factors seem to be interacting on
essentially equal terms.

For example, although reflex stepping does indeed disappear at about 2 months, nearly kinematically
identical motions are still produced when the infant is lying on its back. Such "supine kicking" persists
throughout the first year. The crucial parameter underlying the two-month disappearance of stepping, it
now seems, is merely leg mass! In the upright position, the resistance of the leg mass at about 2 months
overwhelms the spring-like action of the muscles. This hypothesis is supported by experiments (figure
2.1) in which stepping disappears after weights are added to the legs of stepping infants and by
experiments in which stepping reappears after 3-month-old nonsteppers are held upright in water so that
their effective leg mass is reduced. 10
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Environmental manipulations are equally effective in studying the second phase—the reappearance of
stepping between 8 and 10 months. Younger, nonstepping infants, when placed on a treadmill,
performed coordinated stepping; they were even able to adjust their step rate to the treadmill's speed and
to adjust to asymmetric constraints when placed on a treadmill having two independent belts driven at
different speeds. Treadmill stepping was found to occur in infants at all ages between 1 month and 7
months (Thelen and Smith 1994, pp. 11-17). 11

These last results suggest a major role for a mechanical patterning caused by the backward stretching of
the legs initiated by the treadmill. This component of stepping is independent of the gross normal
behavioral transitions, which instead reflect the influence of multiple additional factors such as leg mass.
The developmental pattern is not the expression of an inner blueprint. Rather, it reflects the complex
interplay of multiple forces, some bodily (leg mass), some mechanical (leg stretching and spring-like
actions), some fully external (the presence of treadmills, water, etc.), and some more cognitive and
internal (the transition to volitional—i.e., deliberate—motion). To focus on any one of these parameters
in isolation is to miss the true explanation of developmental change, which consists in understanding the
interplay of forces in a way that eliminates the need to posit any single controlling factor.

2.4 Soft Assembly and Decentralized Solutions

A multi-factor perspective leads rather naturally to an increased respect for, and theoretical interest in,
what might be termed the historical idiosyncrasies of individual development. What needs to be
explained here is the delicate balance between individual variation and developmentally robust
achievements. A key notion for understanding this balancing act is soft assembly.

A traditional robot arm, governed by a classical program, provides an example of "hard assembly.” It
commands a repertoire of moves, and its success depends on the precise placement, orientation, size,
and other characteristics of the components it must manipulate. Human walking, in contrast, is soft-
assembled in that it naturally compensates for quite major changes in the problem space. As Thelen and
Smith point out, icy side-
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walks, blisters, and high-heeled shoes all "recruit” different patterns of gait, muscle control, etc., while
maintaining the gross goal of locomotion. Centralized control via detailed inner models or specifications
seems, in general, to be inimical to such fluid, contextual adaptation. (Recall the lessons from situated
robotics in chapter 1.) Multi-factor, decentralized approaches, in contrast, often yield such robust,
contextual adaptation as a cost-free side effect. This is because such systems, as we saw, create actions
from an "equal partners" approach in which the local environment plays a large role in selecting
behaviors. In situations where a more classical, inner-model-driven solution would break down as a
result of the model's incapacity to reflect some novel environment change, "equal partners™ solutions
often are able to cope because the environment itself helps to orchestrate the behavior.

In this vein, Pattie Maes of the MIT Media Laboratory describes a scheduling system whose goal is to
match processes (jobs, or job parts) to processors (machines). 12 This is a complex task, since new jobs
are always being created and since the loads of different machines continuously vary. A traditional, hard-
assembled solution would invoke a centralized approach in which one system would contain a body of
knowledge about the configurations of different machines, typical jobs, etc. That system would also
frequently gather data from all the machines concerning their current loads, the jobs waiting, and so on.
Using all this information and some rules or heuristics, the system would then search for a schedule (an
efficient assignment of jobs to machines). This is the solution by Pure Centralized Cognition. Now
consider, in contrast, the decentralized solution favored by Maes.13 Here, each machine controls its own
workload. If machine A creates a job, it sends out a "request for bids" to all the other machines. Other
machines respond to such a request by giving estimates of the time they would require to complete the
job. (A low-use machine or one that has some relevant software already loaded will outbid a heavily
used or ill-prepared machines.) The originating machine then simply sends the job to the best bidder.
This solution is both robust and soft-assembled. If one machine should crash, the system compensates
automatically. And no single machine is crucial—scheduling is rather an emergent property of the
simple interactions of posting and bidding among whatever machines are currently active. Nowhere is
there a
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central model of the system's configuration, and hence the problems associated with updating and
deploying such a model don't arise.

Soft assembly out of multiple, largely independent components yields a characteristic mix of robustness
and variability. The solutions that emerge are tailored to the idiosyncrasies of context, yet they satisfy
some general goal. This mix, pervasive throughout development, persists in mature problem solving and
action. Individual variability should thus not be dismissed as "bad data" or "noise™ that somehow
obscures essential developmental patterns. Instead, it is, as Thelen and Smith insist, a powerful clue to

the nature of underlying processes of soft assembly. 14

To illustrate this, Thelen and Smith describe the development of reaching behavior in several infants.
Despite the gross behavioral commonality of the final state (ability to reach), they found powerful
individual differences. Reaching, in each individual case, turned out to be soft-assembled from
somewhat different components, reflecting differences in the intrinsic dynamics of the infants and in
their historical experience. Thelen and Smith paint a highly detailed picture; we will visit just a few
highlights here.

One infant, Gabriel, was very active by nature, generating fast flapping motions with his arms. For him,
the task was to convert the flapping motions into directed reaching. To do so, he needed to learn to
contract muscles once the arm was in the vicinity of a target so as to dampen the flapping and allow
proper contact.

Hannah, in contrast, was motorically quiescent. Such movements as she did produce exhibited low hand
speeds and low torque. Her problem was not to control flapping, but to generate enough lift to overcome
gravity.

Other infants present other mixtures of intrinsic dynamics, but in all cases the basic problem is one of
learning to control some intrinsic dynamics (whose nature, as we have seen, can vary quite
considerably) so as to achieve a goal. To do so, the central nervous system must assemble a solution that
takes into account a wide variety of factors, including energy, temperament, and muscle tone. One
promising proposall2 is that in doing so the CNS is treating the overall system as something like a set of
springs and masses. It is thus concerned, not with generating inner models of reaching trajectories and
the like, but with learning how to modulate such factors as limb stiffness so that imparted energy will
combine with
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intrinsic spring-like dynamics to yield an oscillation whose resting point is some desired target. That is,
the CNS is treated as a control system for a body whose intrinsic dynamics play a crucial role in
determining behavior.

The developmental problems that face each child are thus different, since children's intrinsic dynamics
differ. What is common is the higher-level problem of harnessing these individual dynamics so as to
achieve some goal, such as reaching. The job of the CNS, over developmental time, is not to bring the
body increasingly "into line" so that it can carry out detailed internally represented commands directly
specifying, e.g., arm trajectories. Rather, the job is to learn to modulate parameters (such as stiffness)
which will then interact with intrinsic bodily and environmental constraints so as to yield desired
outcomes. In sum, the task is to learn how to soft-assemble adaptive behaviors in ways that respond to
local context and exploit intrinsic dynamics. Mind, body, and world thus emerge as equal partners in the
construction of robust, flexible behaviors.

2.5 Scaffolded Minds

One final property of soft-assembled solutions merits explicit attention here, since it will loom large in
several later chapters. It concerns the natural affinity between soft assembly and the use of external
scaffolding. As has already been noted, the central nervous system, in learning to modulate parameters
such as stiffness, was in effect solving a problem by "assuming" a specific backdrop of intrinsic bodily
dynamics (the springlike properties of muscles). Such assumed backdrops need not be confined to the
agent's body. Instead, we may often solve problems by "piggybacking” on reliable environmental
properties. This exploitation of external structure is what | mean by the term scaffolding.

The idea of scaffolding has its roots in the work of the Soviet psychologist Lev Vygotsky. 16 VVygotsky
stressed the way in which experience with external structures (including linguistic ones, such as words
and sentences—see chapter 10 below) might alter and inform an individual's intrinsic modes of
processing and understanding. The tradition that ensued included the notion of a zone of proximal
developmentl’—the idea being that adult help, provided at crucial developmental moments, would give
the child experience of successful action which the child alone
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could not produce. Providing support for the first few faltering steps of a near-walker and supporting a
baby in water to allow swimming movements would be cases in point.

The intuitive notion of scaffolding is broader, however, since it can encompass all kinds of external aid
and support whether provided by adults or by the inanimate environment. 18 Two examples are the use
of the physical structure of a cooking environment (grouping spices, oils, etc.) as an external memory
aid (Cole et al. 1978) and the use of special eating utensils that reduce the child's freedom to spill and
spear while providing a rough simulacrum of an adult eating environment (Valsiner 1987).19 The point,
for present purposes, is that environmental structures, just like the elasticity of muscles, form a backdrop
relative to which the individual computational problems facing the child take shape.

Such scaffolding is common enough in noncognitive cases. The simple sponge, which feeds by filtering
water, exploits the structure of its natural physical environment to reduce the amount of actual pumping
it must perform: it orients itself so as to make use of ambient currents to aid its feeding.20 The trick is an
obvious one, yet not until quite recently did biologists recognize it. The reason for this is revealing:
Biologists have tended to focus solely on the individual organism as the locus of adaptive structure.
They have treated the organism as if it could be understood independent of its physical world. In this
respect, biologists have resembled those cognitive scientists who have sought only inner-cause
explanations of cognitive phenomena. In response to such a tendency, the biologist VVogel (1981, p. 182)
has urged a principle of parsimony: "Do not develop explanations requiring expenditure of metabolic
energy (e.g. the full-pumping hypothesis for the sponge) until simple physical effects (e.g. the use of
ambient currents) are ruled out." The extension of VVogel's dictum to the cognitive domain is simple. It is
what | once dubbed the "007 Principle":

In general, evolved creatures will neither store nor process information in costly ways when they can use the
structure of the environment and their operations upon it as a convenient stand-in for the information-processing
operations concerned. That is, known only as much as you need to know to get the job done. (Clark 1989, p. 64)

This principle is reflected in the moboticists' slogan "The world is its own best representation.” It is also
a natural partner to ideas of soft
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assembly and decentralized problem solving. In place of the intellectual engine cogitating in a realm of
detailed inner models, we confront the embodied, embedded agent acting as an equal partner in adaptive
responses which draw on the resources of mind, body, and world. We have now seen a few preliminary
examples involving bodily dynamics and the use of simple kinds of external memory store. In later
chapters we shall pursue these ideas into the special realms of external structure made available by
language, culture, and institutions.

2.6 Mind as Mirror vs. Mind as Controller

We have now seen a variety of ways in which cognition might exploit real-world action so as to reduce
computational load. The perspective developed in the preceding sections takes us one step further, for it
suggests ways in which robust, flexible behavior may depend on processes of decentralized soft
assembly in which mind, body, and world act as equal partners in determining adaptive behavior. This
perspective leads to a rather profound shift in how we think about mind and cognition—a shift |
characterize as the transition from models of representation as mirroring or encoding to models of
representation as control (Clark 1995). The idea here is that the brain should not be seen as primarily a
locus of inner descriptions of external states of affairs; rather, it should be seen as a locus of inner
structures that act as operators upon the world via their role in determining actions.

A lovely example of the use of such action-centered representations can be found in the work of Maja
Mataric of the MIT Artificial Intelligence Laboratory. Mataric has developed a neurobiology-inspired
model of how rats navigate their environments. The model has been implemented in a mobile robot. The
robot rat, which has sonar sensors and a compass, achieves real-time success by exploiting the kind of
subsumption architecture | described in chapter 1: it uses a set of quasi-independent "layers," each of
which constitutes a complete processing route from input to output and which communicates only by
passing fairly simple signals. One such layer generates boundary tracing: the robot follows walls while
avoiding obstacles. A second layer detects landmarks, each of which is registered as a combination of
the robot's motion and its sensory input (a corridor
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Figure 2.2 Example of a robot's reflexive navigation
behavior in a cluttered office environment. Labels include
landmark type and compass bearing (LW8 = left wall
heading south; CO = corridor heading north; J = long
irregular boundary). Source: Mataric 1991. Used by
kind permission of M. Mataric and MIT Press.

Is thus remembered as the combination of forward motion and short lateral distance readings from the
sonar sensors). A third layer uses this information to construct a map of the environment (figure 2.2).
The map consists of a network of landmarks, each of which is, as we saw, a combination of motoric and
sensory readings. All the nodes on the map process information in parallel, and they communicate by
spreading activation. The robot's current location is indicated by an active node. The constructed map
represents the spatial adjacency of landmarks by topological links (adjacent landmarks correspond to
neighboring nodes—see figure 2.3). An active node excites its neighbors in the direction of travel, thus
generating "expectations" about the next landmarks to be encountered. Suppose now that the robot
wants to find its way to a remembered location. Activity at the node for that location is increased. The
current
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Figure 2.3 A map constructed by a robot in the environment
shown in figure 2.2. Topological links between landmarks
indicate physical spatial adjacency. Source: Mataric 1991.

Used by kind permission of M. Mataric and MIT Press.

Figure 2.4 The map actively carries out path finding.
Shaded node is goal node. Arrows indicate spreading of
activation from goal. Source: Mataric 1991. Used by
kind permission of M. Mataric and MIT Press.

location node is also active. The process of spreading activation then propagates a signal through the
cognitive map, and the shortest path to the goal is computed (figure 2.4). Since the nodes on the map
themselves combine information about the robot's movement and the correlated perceptual input, the
map can itself act as the controller. Using the map and generating the plan for real movements turns out
to be one and the same activity.

It is this feature—the ability of the map itself to act as the controller—that is of the greatest interest to
us. A more classical approach would posit both some kind of stored map and a central control module
that accesses the map and uses it to plan movements. The Mataric robot, in contrast, employs no
reasoning device outside of the map itself. The map is its own user, and its knowledge is both
descriptive (of locations) and prescriptive (it represents the relationship between two locations as the
sequence of movements that would carry the robot from one landmark to the other). The robot is thus a
perfect example of the idea of action-oriented representations: representations that simultaneously
describe aspects of the world and prescribe possible actions, and are poised between pure control
structures and passive representations of external reality.
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A related view of internal representation was pioneered by the psychologist James Gibson (1950, 1968,
1979). This work made the mistake, however, of seeming to attack the notion of complex mediating
inner states tout court. Despite this rhetorical slip, Gibsonian approaches are most engagingly seen only
as opposing the encoding or mirroring view of internal representation.

Gibson's claim, thus sanitized, was that perception is not generally mediated by action-neutral, detailed
inner-world models. It is not mediated by inner states which themselves require further inspection or
computational effort (by some other inner agency) in order to yield appropriate actions. This is not, then,
to deny the existence and the importance of mediating inner states altogether. Rather, it is to insist that
the inner states be "action-centered"—a theme Gibson pursues by depicting organisms as keyed to
detecting "affordances” in the distal environment. Such affordances are nothing other than the
possibilities for use, intervention, and action offered by the local environment to a specific type of
embodied agent. For example, a human perceives a chair as "affording sitting," but the affordances
presented by a chair to a hamster would be radically different.

Perception, construed this way, is, from the outset, geared to tracking possibilities for action. In the
place of passive re-presentation followed by inference, Gibson posits the "direct perception™ of a
complex of opportunities for action. In representing (as I, but not Gibson, would put it) the environment
as such a complex of possibilities, we create inner states that simultaneously describe partial aspects of
the world and prescribe possible actions and interventions. Such states have been aptly christened
"pushmi-pullyu" representations by the philosopher Ruth Millikan. 21 Like the fabulous beast, they face
both ways at once: they say how the world is and they prescribe a space of adaptive responses.

The common theme of these several lines of inquiry is the rejection of any blanket image of perception
as the passive reception of information. Infants' perceptions of slopes, we saw, seem deeply tied to the
specific motor routines by which slopes are actively engaged. Adult skill at darts appears, from the
distorting-lens experiments, to involve large-scale perception/action systems rather than passive
perception acting as a source of data for independent action systems to exploit. The immediate prod-
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ucts of much of perception, such cases suggest, are not neutral descriptions of the world so much as
activity-bound specifications of potential modes of action and intervention. Nor are these specifications
system-neutral. Instead, as the discussion of reaching suggested, they are likely to be tailored in ways
that simply assume, as unrepresented backdrop, the intrinsic bodily dynamics of specific agents. It is
worth pausing to appreciate how much distance separates this vision from the classical "disembodied"
image.

Perception is commonly cast as a process by which we receive information from the world. Cognition
then comprises intelligent processes defined over some inner rendition of such information. Intentional
action is glossed as the carrying out of commands that constitute the output of a cogitative, central
system. But real-time, real-world success is no respecter of this neat tripartite division of labor. Instead,
perception is itself tangled up with specific possibilities of action—so tangled up, in fact, that the job of
central cognition often ceases to exist. The internal representations the mind uses to guide actions may
thus be best understood as action-and-context-specific control structures rather than as passive
recapitulations of external reality. The detailed, action-neutral inner models that were to provide the
domain for disembodied, centralized cogitation stand revealed as slow, expensive, hard-to-maintain
luxuries—top-end purchases that cost-conscious nature will generally strive to avoid.
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3
Mind and World: The Plastic Frontier

3.1 The Leaky Mind

Mind is a leaky organ, forever escaping its "natural” confines and mingling shamelessly with body and with world.
What kind of brain needs such external support, and how should we characterize its environmental interactions? What
emerges, as we shall see, is a vision of the brain as a kind of associative engine, and of its environmental interactions as
an iterated series of simple pattern-completing computations.

At first blush, such a vision may seem profoundly inadequate. How can it account for the sheer scale and depth of
human cognitive success? Part (but only part) of the answer is that our behavior is often sculpted and sequenced by a
special class of complex external structures: the linguistic and cultural artifacts that structure modern life, including
maps, texts, and written plans. Understanding the complex interplay between our on-board and on-line neural resources
and these external props and pivots is a major task confronting the sciences of embodied thought.

| shall begin gently, by introducing an important player to our emerging stage: the artificial neural network.
3.2 Neural Networks: An Unfinished Revolution

CYC, the electronic encyclopedia described in the introduction, was an extreme example of rule-and-symbol-style
artificial intelligence. Not all projects in traditional Al were quite so gung-ho about the power of large knowledge bases
and explicit encodings, but an underlying common flavor persisted throughout much of the work: the general vision of
intelligence
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as the manipulation of symbols according to rules. "Naive Physics," for example, aimed to specify in logical form our
daily knowledge about how liquids spill, how books stack, and so on (Hayes 1979). Programs like STRIPS applied
theorem-proving techniques to ordinary problem solving (Fikes and Nilsson 1971), and big systems like SOAR
incorporated a wide variety of such methods and representations into a single computational architecture. Nonetheless,
it was not until the advent (or rebirth 1) of so-called neural network models of mind that any fundamentally different
proposal was put on the table.

Neural network models, as the name suggests, are at least distantly inspired by reflection on the architecture of the
brain. The brain is composed of many simple processing units (neurons) linked in parallel by a large mass of wiring
and junctions (axons and synapses). The individual units (neurons) are generally sensitive only to local
information—each "listens"” to what its neighbors are telling it. Yet out of this mass of parallel connections, simple
processors, and local interactions there emerges the amazing computational and problem-solving prowess of the human
brain.


javascript:doPopup('Popup','Page_54_Popup_1.html','width=480,height=168,resizable=yes,scrollbars=yes')

In the 1980s, the field of artificial intelligence was transformed by an explosion of interest in a class of computational
models that shared this coarse description of the functionality of the brain. These were the “connectionist” (or "neural
network," or "parallel distributed processing) models of intelligence and cognition. The degree to which these early
models resembled the brain should not be overstated.2 The differences remained vast: the multiplicity of types of
neurons and synapses was not modeled, the use of temporal properties (such as spiking frequencies) was not modeled,
the connectivity was not constrained in the same ways as that of real neural systems, and so forth. Despite all this, the
flavor of the models was indeed different and in a very real sense more biologically appealing. It became much easier
for Al researchers working in the new paradigm to make contact with the results and hypotheses of real neuroscience.
The vocabularies of the various sciences of the mind seemed at last to be moving closer together.

The basic feel of the new approach is best conveyed by example. Consider the task of pronouncing English text by
turning written input (words) into phonetic output (speech). This problem can be solved by sys-
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tems that encode rules of text-to-phoneme conversion and lists of exception cases, all carefully hand-coded by human
programmers. DECtalk, 3 for example, is a commercial program that performs the task and whose output can drive a
digital speech synthesizer. DECtalk thus relies on a fairly large, explicitly formulated, handcrafted knowledge base.
NETtalk, in contrast, learns to solve the problem using an artificial neural network. The network was not provided with
any set of hand-coded rules for solving the problem. Instead, it learned to solve it by exposure to a large corpus of
examples of text-phoneme pairings and a learning routine (detailed below). The architecture of NETtalk was an
interconnected web of units that shared some of the coarse properties of real neural networks. And the behavior of the
artificial network was truly impressive. The output units were connected to a speech synthesizer, so you could hear the
system slowly learning to talk, proceeding from staccato babble to half-formed words and finally to a good simulation
of normal pronunciation.

NETtalk (like DECtalk) understood nothing. It was not told about the meanings of words, and it could not use language
to achieve any real-world goals. But it was nonetheless a benchmark demonstration of the power of artificial neural
networks to solve complex and realistic problems. How did it work?

The elements of the computational system are idealized neurons, or "units." Each unit is a simple processing device that
receives input signals from other units via a network of parallel connections. Each unit sums its inputs and yields an
output according to a simple mathematical function.# The unit is thus activated to whatever degree the inputs dictate,
and will pass a signal to its neighbors. The signal arriving at the neighbors is determined by both the level of activation
of the "sender" unit and the nature of the connection involved. Each connection has a weight, which modulates the
signal. Weights can be positive (excitatory) or negative (inhibitory). The downstream signal is determined by the
product of the numerical weight and the strength of the signal from the "sender" unit.

A typical connectionist network like NETtalk consists of three layers of units: "input units" (which encode the data to
be processed), "hidden units" (which mediate the processing),2 and "output units" (which specify the systems response
to the data in the form of a vector of numerical activation values). The knowledge of the system is encoded in the
weighted
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connections between the units, and it is these weights which are adapted during learning. Processing involves the
spreading of activation throughout the network after the presentation of a specific set of activation values at the input
units. In the case of NETtalk there are seven groups of input units, each group consisting of 29 units. Each group of 29
represents one letter, and the input consists of seven letters—one of which (the fourth) was the target whose phonemic
contribution (in the context provided by the other six) was to be determined at that moment. The inputs connected to a
layer of 80 hidden units, which in turn connected to 26 output units which coded for phonemes. The network involved a
total of 18,829 weighted connections.

How does such a system learn? It learns by adjusting the between-unit weights according to a systematic procedure or
algorithm. One such procedure is the "backpropagation algorithm.” This works as follows: The system is initialized
with a series of random weights (within certain numerical bounds). As they stand (being random), these weights will
not support a solution of the target problem as they stand. The net is then trained. It is given a set of inputs, and for
each input it will (courtesy of the initially random weights) produce some output —almost always incorrect. However,
for each input a supervisory system sees an associated correct output (like a teacher who knows the answers in
advance). The supervisory system automatically compares the actual output (a set of numerical activation values) with
the correct output. For example, a face-recognition system may take as input a specification of a visual image and be
required to output artificial codes corresponding to named individuals. In such a case, the correct output, for some
given visual input, might be the numerical sequence <1010» if this has been designated as an arbitrary code for "Esther
Russell." The system, courtesy of the random weights, will not do well—it may give, e.g., <0.7, 0.4, 0.2, 0.2> as its
initial output. At this point the supervisory system will compare the actual and desired outputs for each output unit and
calculate the error on each. The errors are squared (for reasons that need not detain us) and averaged, yielding a mean
squared error (MSE). The system then focuses on one weighted connection and asks whether (with all the other weights
kept as they are) a slight increase or decrease in the weights would reduce the MSE. If so, then the weight is amended
accordingly. This
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procedure is repeated for each weight; then the overall cycle of input/output/weight adjustment is repeated again and
again until a low MSE is achieved. At that point, the network will be performing well (in this case, putting the right
names to the visual images). Training then ceases, and the weights are frozen; the network has learned to solve the
problem. &

This kind of learning can be usefully conceived as gradient descent. Imagine you are standing somewhere on the inside
slopes of a giant pudding-basin-shaped crater. Your task is to find the bottom—the correct solution, the lowest error.
You are blindfolded, so you cannot see where the bottom is. However, for each tiny step you might take, you can tell if
the step would move you uphill (that is, in the direction of more error) or downhill (in the direction of less error). Using
just this local feedback, and taking one tiny step at a time, you will inexorably move toward the bottom of the basin and
then stop. Gradient-descent learning methods (of which back-propagation is an instance) proceed in essentially the
same way: the system is pushed down the slope of decreasing error until it can go no further. At this point (in friendly,
basin-shaped landscapes) the problem is solved, the solution reached.
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Notice that at no stage in this process are the weights coded by hand. For any complex problem, it is well beyond our
current capacities to find, by reflective analysis, a functional set of connection weights. What is provided is an initial
architecture of so many units with a certain kind of connectivity, and a set of training cases (input-output pairs). Notice
also that the upshot of learning is not, in general, a mere parrot-fashion recall of the training data. In the case of
NETtalk, for example, the system learns about general features of the relation between text and spoken English. After
training, the network could successfully deal with words it had never encountered before—words that were not in its
initial training set.

Most important, NETtalk's knowledge of text-to-phoneme transitions does not take the form of explicit symbol-string
encodings of rules or principles. The knowledge is stored in a form suitable for direct use by a brain-like system: as
weights or connections between idealized "neurons™ or units. The text-like forms favored by CYC and SOAR are, in
contrast, forms suitable for use as external, passive knowledge structures by advanced agents such as humans. In
retrospect, it is surely highly implausible that our brains (which are not so very different from those of some
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non-language-using creatures) should themselves use anything like the format favored by the thin projections of our
thoughts onto public mediums like paper and air molecules. Brain codes must be active in a way in which text-style
storage is not. The major lesson of neural network research, | believe, has been to thus expand our vision of the ways a
physical system like the brain might encode and exploit information and knowledge. In this respect, the neural network
revolution was surely a success.

Moreover, neural network technology looks to be with us to stay. Techniques such as those just described have been
successfully applied in an incredible diversity of areas, including recognition of handwritten zip codes, visual
processing, face recognition, signature recognition, robotic control, and even planning and automated theorem proving.
The power and the usefulness of the technology are not to be doubted. However, its ability to illuminate biological
cognition depends not just on using a processing style that is at least roughly reminiscent of real neural systems but also
on deploying such resources in a biologically realistic manner. Highly artificial choices of input and output
representations and poor choices of problem domains have, | believe, robbed the neural network revolution of some of
its initial momentum. This worry relates directly to the emerging emphasis on real-world action and thus merits some
expansion.

The worry is, in essence, that a good deal of the research on artificial neural networks leaned too heavily on a rather
classical conception of the nature of the problems. Many networks were devoted to investigating what | once (Clark
1989, chapter 4; see also section 1.2 above) termed "vertical microworlds": small slices of human-level cognition, such
as producing the past tense of English verbs 7 or learning simple grammars.8 Even when the tasks looked more basic
(e.g., balancing building blocks on a beam pivoting on a movable fulcrum? ), the choice of input and output
representations was often very artificial. The output of the block-balancing programs, for example, was not real motor
actions involving robot arms, or even coding for such actions; it was just the relative activity of two output units
interpreted so that equal activity on both indicated an expectation of a state of balance and excess activity on either unit
indicated an expectation that the beam would overbalance in that direction. The inputs to the system, likewise, were
artificial—an arbitrary coding for weight along one input channel and one for distance from the fulcrum
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along another. It is not unreasonable to suppose that this way of setting up the problem space might well lead to
unrealistic, artifactual solutions. An alternative and perhaps better strategy would surely be to set up the system to take
realistic inputs (e.g., from cameras) and to yield real actions as outputs (moving real blocks to a point of balance). Of
course, such a setup requires the solution of many additional problems, and science must always simplify experiments
when possible. The suspicion, however, is that cognitive science can no longer afford simplifications that take the real
world and the acting organism out of the loop—such simplifications may obscure the solutions to ecologically realistic
problems that characterize active embodied agents such as human beings. Cognitive science’s aspirations to illuminate
real biological cognition may not be commensurate with a continuing strategy of abstraction away from the real-world
anchors of perception and action. This suspicion is, | believe, fully borne out by the significant bodies of research
described in this book. One central theme which has already emerged is that abstracting away from the real-world poles
of sensing and acting deprives our artificial systems of the opportunity to simplify or otherwise transform their
information-processing tasks by the direct exploitation of real-world structure. Yet such exploitation may be especially
essential if we hope to tackle sophisticated problem solving using the kinds of biologically plausible pattern-completing
resources that artificial neural networks provide, as we shall now see.

3.3 Leaning on the Environment

Artificial neural networks of the broad stripe described above 10 present an interesting combination of strengths and
weaknesses. They are able to tolerate "noisy,” imperfect, or incomplete data. They are resistant to local damage. They
are fast. And they excel at tasks involving the simultaneous integration of many small cues or items of information—an
ability that is essential to real-time motor control and perceptual recognition. These benefits accrue because the systems
are, in effect, massively parallel pattern completers. The tolerance of "noisy," incomplete, or imperfect data amounts to
the ability to recreate whole patterns on the basis of partial cues. The resistance to local damage is due to the use of
multiple unit-level
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resources to encode each pattern. The speed follows from the parallelism, as does the ability to take simultaneous
account of multiple small cues. 11 Even some of the faults of such systems are psychologically suggestive. They can
suffer from "crosstalk,” in which similar encodings interfere with one another (much as when we learn a new phone
number similar to one we already know and immediately muddle them up, thus forgetting both). And they are not
intrinsically well suited to highly sequential, stepwise problem solving of the kind involved in logic and planning
(Norman 1988; Clark 1989, chapter 6). A summary characterization might be "good at Frisbee, bad at logic"—a
familiar profile indeed. Classical systems, with their neat, well-defined memory locations are immune to crosstalk and
are excellent at logic and sequential problem solving, but they are much less well adapted to real-time control tasks.
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Thus, artificial neural networks are fast but limited systems that, in effect, substitute pattern recognition for classical
reasoning. As might be expected, this is both a boon and a burden. It is a boon insofar as it provides just the right
resources for the tasks humans perform best and most fluently: motor control, face recognition, reading handwritten zip
codes, and the like (Jordan et al. 1994; Cottrell 1991; LeCun et al. 1989). But it is a burden when we confront tasks
such as sequential reasoning or long-term planning. This is not necessarily a bad thing. If our goal is to model human
cognition, computational underpinnings that yield a pattern of strengths and weaknesses similar to our own are to be
favored. And we are generally better at Frisbee than at logic. Nonetheless, we are also able, at least at times, to engage
in long-term planning and to carry out sequential reasoning. If we are at root associative pattern-recognition devices,12
how is this possible? Several factors, | believe, conspire to enable us to thus rise above our computational roots. Some
of these will emerge in subsequent chapters.13 One, however, merits immediate attention. It is the use of our old friend,
external scaffolding.

Connectionist minds are ideal candidates for extensive external scaffolding. A simple example, detailed in Parallel
Distributed Processing (the two-volume bible of neural network researchl4), concerns long multiplication. Most of us,
it is argued, can learn to know at a glance the answers to simple multiplications, such as 7 x 7 = 49. Such knowledge
could easily be supported by a basic on-board pattern-recognition device.

Page 61

But longer multiplications present a different kind of problem. Asked to multiply 7222 x 9422, most of us resort to pen
and paper (or a calculator). What we achieve, using pen and paper, is a reduction of the complex problem to a sequence
of simpler problems beginning with 2 x 2. We use the external medium (paper) to store the results of these simple
problems, and by an interrelated series of simple pattern completions coupled with external storage we finally arrive at
a solution. Rumelhart et al. (1986, p. 46) comment: "This is real symbol processing and, we are beginning to think, the
primary symbol processing that we are able to do. Indeed, on this view, the external environment becomes a key
extension to our mind."

Some of us, of course, go on to learn to do such sums in our heads. The trick in these cases, it seems, is to learn to
manipulate a mental model in the same way as we originally manipulated the real world. This kind of internal symbol
manipulation is importantly distinct from the classical vision of inner symbols, for it claims nothing about the
computational substrate of such imaginings. The point is simply that we can mentally simulate the external arena and
hence, at times, internalize cognitive competencies that are nonetheless rooted in manipulations of the external
world—cognitive science meets Soviet psychology. 12

The combination of basic pattern-completing abilities and complex, well-structured environments may thus enable us
to haul ourselves up by our own computational bootstraps. Perhaps the original vision of classical Al was really a
vision of the abilities of basic pattern-completing organisms as embedded in a superbly structured environment—a
vision mistakenly projected all the way back onto the basic on-board computational resources of the organism. In other
words, classical rule-and-symbol-based Al may have made a fundamental error, mistaking the cognitive profile of the
agent plus the environment for the cognitive profile of the naked brain (Clark 1989, p. 135; Hutchins 1995, chapter 9).
The neat classical separation of data and process, of symbol structures and CPU, may have reflected nothing so much
as the separation between the agent and an external scaffolding of ideas persisting on paper, in filing cabinets, or in
electronic media.

The attractions of such a vision should not disguise its shortcomings. The human external environment is superbly
structured in virtue of our
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use of linguistic, logical, and geometric formalisms and the multiple external memory systems of culture and learning.
Not all animals are capable of originating such systems, and not all animals are capable of benefiting from them even
once they are in place. The stress on external scaffolding thus cannot circumvent the clear fact that human brains are
special. But the computational difference may be smaller and less radical than we sometimes believe. It may be that a
small series of neuro-cognitive differences make possible the origination and exploitation of simple linguistic and
cultural tools. From that point on, a kind of snowball effect (a positive feedback loop) may take over. Simple external
props enable us to think better and hence to create more complex props and practices, which in turn "turbocharge™ our
thought a little more, which leads to the development of even better props. ... It is as if our bootstraps themselves grew
in length as a result of our pulling on them!

Coming back down to earth, we may pursue the idea of scaffolded pattern-completing reason in some simpler domains.
Consider David Kirsh's (1995) treatment of the intelligent use of physical space. Kirsh, who works in the Cognitive
Science Department at the University of California in San Diego, notes that typical Al studies of planning treat it as a
very disembodied phenomenon—in particular, they ignore the way we use the real spatial properties of a work space to
simplify on-board computation. Once the idea is broached, of course, examples are commonplace. Here are a few of
Kirsh's favorites:

To solve the dieter's problem of allocating 3/4 of a day's allocation of cottage cheese (say, 2/3 cup) to one
meal, physically form the cheese into a circle, divide it into 4, and serve 3 quadrants. It is easy to see the
required quantity thus arranged: not so easy to compute 3/4 of 2/3. (De la Rocha 1985, cited in Kirsh
1995)

. To repair an alternator, take it apart but place the pieces in a linear or grouped array, so that the task of
selecting pieces for reassembly is made easier.

. To pack groceries into bags, create batches of similar items on the work surface. Grouping heavy items,
fragile items, and intermediate items simplifies the visual selection process, and the relative sizes of the
piles alert you to what needs accommodating most urgently.

. In assembling a jigsaw puzzle, group similar pieces together, thus allowing fine-grained visual comparison
of (e.g.) all the green pieces having a straight edge.
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The moral is clear: We manage our physical and spatial surroundings in ways that fundamentally alter the information-
processing tasks our brains confront. (Recall the 007 Principle from chapter 2.)

What makes this cooperative approach worthwhile is the difference in nature between the kinds of computations which
come naturally to the free-standing brain and the ones which can be performed by parasitizing environmental resources.
But such parasitization, as we shall see, casts doubt on the traditional boundaries between mind and world themselves.

3.4 Planning and Problem Solving

There is a classical dissmbodied vision of planning which Phil Agre and David Chapman (1990) have labeled the "plan-
as-program” idea. This is the idea (already encountered in chapter 2) of a plan as specifying a complete sequence of
actions which need only be successfully performed to achieve some goal. A list of instructions for boiling an egg, or for
dismantling an alternator, amounts to such a specification. A great deal of the work on "classical” planning imagines, in
effect, that complex sequences of actions are determined by an internalized version of some such set of instructions.
(See, e.g., Tate 1985 and Fikes and Nilsson 1971.)

Once we look closely at the real-world behaviors of planning agents, however, it becomes clear that there is a rather
complex interplay between the plan and the supporting environment. This interplay goes well beyond the obvious fact
that specific actions, once performed, may not have the desired effect and may thus require some on-line rethinking
about how to achieve specific subgoals. In such cases the original internalized plan is still a complete, though fallible,
specification of a route to success. In many cases, however, the plan turns out to be something much more partial, and
much more intimately dependent on properties of the local environment.

Our earlier example of the jigsaw puzzle is a case in point. Here, an agent may exploit a strategy that incorporates
physical activity in an important way. Picking up pieces, rotating them to check for potential spatial matches, and then
trying them out are all parts of the problem-solving activity. Imagine, in contrast, a system that first solved the whole
puzzle by pure thought and then used the world merely as the arena in which the already-achieved solution was to be
played out. Even a system
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that then recognized failures of physical fit and used these as signals for replanning (a less caricatured version of
classical planning) still exploits the environment only minimally relative to the rich interactions (rotations, assessments
of candidate pieces, etc.) that characterize the human solution.

This crucial difference is nicely captured by David Kirsh and Paul Maglio (1994) as the distinction between pragmatic
and epistemic action. Pragmatic action is action undertaken because of a need to alter the world to achieve some
physical goal (e.g., one must peel potatoes before boiling them). Epistemic action, in contrast, is action whose primary
purpose is to alter the nature of our own mental tasks. In such cases, we still act on the world, but the changes we
impose are driven by our own computational and information-processing needs.



We have already met several examples of epistemic action, such as the use in animate vision of eye and body
movements to retrieve specific types of information as and when required. What Kirsh and Maglio add to this
framework is the idea that the class of epistemic actions is much broader than the animate-vision examples display. It
includes all kinds of actions and interventions whose adaptive role is to simplify or alter the problems confronting
biological brains.

A simple example, again from Kirsh (1995, p. 32), concerns the use of Scrabble tiles. During play, we physically order
and reorder the tiles as a means of prompting our own on-line neural resources. Relating this to the research on
artificial neural networks described in section 3.2, we may imagine the on-line neural resource as a kind of pattern-
completing associative memory. One Scrabble-playing strategy is to use the special class of external manipulations so
as to create a variety of fragmentary inputs (new letter strings) capable of prompting the recall of whole words from the
pattern-completing resource. The fact that we find the external manipulations so useful suggests strongly that our on-
board (in-the-head) computational resources do not themselves provide easily for such manipulations (whereas a
classical Al program would find such internal operations trivial). This simple fact argues in favor of a nonclassical
model of the inner resources. Once again, it looks for all the world (pun intended) as if the classical image bundles into
the machine a set of operational capacities which in real life emerge only from the interactions between machine
(brain) and world.
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Figure 3.1 In the game Tetris, "zoids" fall one at a time from the top
of the screen, eventually landing on the bottom or on zoids
that have already landed. As a zoid falls, the player can rotate it, translate
it to the right or the left, or immediately drop it to the bottom.
When a row of squares is filled all the way across the screen, it disappears,
and all rows above it drop down. Source: Kirsh and Maglio 1994.
Reproduced by kind permission of D. Kirsh, P. Maglio, and Ablex Publishing Corporation.

One upshot of these observations is that external structures (including external symbols like words and letters) are
special insofar as they allow types of operations not readily (if at all) performed in the inner realm. 16
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A more complex example that makes essentially the same point comes from Kirsh and Maglio's (1994) detailed studies
of performance on the computer game Tetris. Tetris requires the player to place variegated geometric shapes ("'zoids")
into compact rows (figure 3.1). Each completed row disappears, allowing more space for new zoids. Zoids appear at the
top of the screen and fall at a rate which increases as the game progresses. As a zoid falls, a player can rotate it, move it
left or right, or drop it directly to the bottom. The task is thus to match shapes and geographical
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opportunities, and to do so subject to strong real-time constraints. One striking result of Kirsh and Maglio's
investigations was that advanced players performed a variety of epistemic actions: actions whose purpose was to reduce
inner computational effort rather than to gain physical ground. For example, a player may physically rotate a zoid so as
to better determine its shape or to check its potential match to some geographical opportunity. Such external encounters
seem faster and more reliable than internal analogues, such as imagining the zoid rotating. It is especially interesting to
note (with Kirsh and Maglio) that in the case of Tetris the internal and external operations must be temporally
coordinated so closely that the inner and outer systems (the brain/CNS and the onscreen operations) seem to function
together as a single integrated computational unit.

The world can thus function as much more than just external memory. It can provide an arena in which special classes
of external operations systematically transform the problems posed to individual brains. 17 Just as Einstein replaced the
independent notions of space and time with a unified construct (space-time), Kirsh and Maglio suggest that cognitive
science may need to replace the independent constructs of physical space and information-processing space with a
unified physico-informational space.18

A final aside concerning the interplay between mind and environmental structure: Consider the case of patients with
advanced Alzheimer's Disease. Many of these patients live surprisingly normal lives in the community, despite the fact
that standard assessments of their capabilities suggest that many such patients should be incapable of surviving outside
of special-care institutions. The key to such surprising successes, it seems, lies in the extent to which the individuals
rely on highly structured environments which they create and then inhabit. These environments may incorporate
multiple reminding notices around the house and strict adherence to specific routines. One patient virtually lives on a
couch in the center of her apartment, since this provides a vantage point from which she can visually access the
location of whatever she needs—this really is a case of using the world as external memory.19

Where does all this leave the notion of planning? The systematic problem solving of biological brains, it seems, does
not really follow the plan-
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as-program model. Instead, individual agents deploy general strategies which incorporate operations upon the world as
an intrinsic part of the problem-solving activity. Such activity can clearly involve explicitly formulated (perhaps
written) plans. But even in these cases, the plan functions more like an external constraint on behavior than a complete
recipe for success. 20 In a certain sense, we are like very clever mobots with Filofaxes. Our cleverness shows itself in
our ability to actively structure and operate upon our environment so as to simplify our problem-solving tasks. This
active structuring and exploitation extends from the simple use of spatial arrangements, through the use of specific
transformations (shuffling the Scrabble tiles, rotating the Tetris zoids), all the way to the production of explicit written
plans that allow easy reordering and shifting focus of attention. These latter cases involve the use of the special class of
external structures that constitute maps, codes, languages, and symbols—structures that will be discussed at length in
chapter 10.

3.5 After The Filing Cabinet

Artificial neural networks, we saw, provide a useful (though clearly only partial) model of some of the kinds of
computational strategies that real brains seem to deploy. Such strategies stress pattern completion and associative
memory at the expense of more familiar logical and symbolic manipulations. Work with artificial neural networks thus
provides a valuable antidote to what has been termed the "filing cabinet” view of mind: the image of mind as a
storehouse of passive language-like symbols waiting to be retrieved and manipulated by a kind of neural central
processing unit. Nonetheless, some residual features of the filing-cabinet view remained unexpunged. Like a filing
cabinet, mind was all too often treated as a passive resource: an organ for classifying and transforming incoming data
but not intrinsically geared to taking action in the world. This lack of attention to the problems and possibilities
attending real-world, real-time action taking manifests itself in various ways. The choice of highly abstract task
domains (such as generating the past-tense forms of English verbs) and the use of very artificial forms of input and
output coding are both symptoms of a vision of mind as, in essence, an organ of timeless, disembodied reason. No one
thought, of course, that perception,
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motion, and action did not matter at all. All agreed that sooner or later such issues would have to be factored in. But it
was widely believed that the additional problems such topics posed could be safely separated from the primary task of
understanding mind and cognition, and that the solutions to these more "practical” problems could just be "glued onto"
the computational engines of disembodied reason.

It is this methodological separation of the tasks of explaining mind and reason (on the one hand) and explaining real-
world, real-time action taking (on the other) that a cognitive science of the embodied mind aims to question. Once real-
world problems are confronted in their proper setting and complexity, it becomes clear that certain styles of problem
solving simply will not work. And the kinds of solution that do work often merge the processes of reasoning and acting
in unexpected ways, and cut back and forth across the traditional boundaries of mind, body, and environment.
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In one sense, this should come as no surprise. Our brains evolved as controllers of bodies, moving and acting in a real
(and often hostile) world. Such evolved organs will surely develop computational resources that are complementary to
the actions and interventions they control. Thus understood, the brain need not, after all, maintain a small-scale inner
replica of the world—one that supports the exact same types of operation and manipulation we customarily apply to the
world. Instead, the brain's brief is to provide complementary facilities that will support the repeated exploitation of
operations upon the world. Its task is to provide computational processes (such as powerful pattern completion) that the

world, even as manipulated by us, does not usually afford. 21

Where, then, is the mind? Is it indeed "in the head,” or has mind now spread itself, somewhat profligately, out into the
world? The question is a strange one at first sight. After all, individual brains remain the seats of consciousness and
experience. But what about reason? Every thought is had by a brain. But the flow of thoughts and the adaptive success
of reason are now seen to depend on repeated and crucial interactions with external resources. The role of such
interactions, in the cases | have highlighted, is clearly computational and informational: it is to transform inputs, to
simplify search, to aid recognition, to prompt associative recall, to offload memory, and so on. In a sense, then, human
reasoners are truly distributed cognitive engines: we call on external resources to perform spe-
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cific computational tasks, much as a networked computer may call on other networked computers to perform specific
jobs. One implication of Kirsh and Maglio's demonstration of the role of epistemic action is thus, | suggest, a
commensurate spreading of epistemic credit. Individual brains should not take all the credit for the flow of thoughts or
the generation of reasoned responses. Brain and world collaborate in ways that are richer and more clearly driven by
computational and informational needs than was previously suspected.

It would be comforting to suppose that this more integrated image of mind and world poses no threat to any of our
familiar ideas about mind, cognition, and self. Comforting but false. For although specific thoughts remain tied to
individual brains, the flow of reason and the informational transformations it involves seem to criss-cross brain and
world. Yet it is this flow of ideas that, | suspect, we most strongly associate with the idea of the mind as the seat of
reason and of the self. This flow counts for more than do the snapshots provided by single thoughts or experiences. 22
The true engine of reason, we shall see, is bounded neither by skin nor skull.
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4
Collective Wisdom, Slime-Mold-Style

4.1 Slime Time

It is the spring of 1973, and the weather has been unseasonably wet. As you gaze out the window into your yard, your
eye is caught by a proliferation of deep yellow blob-like masses. What could they be? Puzzled, you return to work but
are unable to settle down. A while later you return to the window. The yellow jelliform masses are still in evidence, but
you would swear they have moved. You are right. The newcomers are slowly but surely creeping around your yard,
climbing up the nearby telephone pole—moving in on you. In a panic, you phone the police to report a likely sighting
of alien life forms in the USA. In fact, what you (and many others) saw was a fully terrestrial being, but one whose life
cycle is alien indeed: Fuligo septica, a type of acellular slime mold. 1

Slime molds come in many varieties2 and sizes., but all belong to the class of Mycetozoa. The name is revealing,
combining 'mycet’ (fungus) and 'zoa' (animal). They like moist surroundings and are often found on rotting logs, tree
stumps, or piles of decaying plant matter. They are widely distributed geographically, and do not seem bound to
specific climates. As one handbook puts it, "many species are apt to pop up most anywhere, unexpectedly™ (Farr 1981,

p. 9).

Of special interest is the life cycle of the "cellular” slime mold. Take, for instance, the species Dictyostelium
discoideum,? first discovered in 1935 in North Carolina. The life cycle of D. discoideum begins with a so-called
vegetative phase, in which the slime-mold cells exist individually, like amoeba (they are called myxamoebae). While
local food sources last (the myxamoebae feed on bacteria) the cells grow and divide. But when
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Figure 4.1 Migrating shrugs (pseudoplasmodia)
of acellular slime mold. Source: Morrissey 1982.
Used by permission of Academic Press.

food sources run out, a truly strange thing happens. The cells begin to cluster together to form a tissue-like mass called
a pseudoplasmodium. The pseudoplasmodium, amazingly, is a mobile collective creature—a kind of miniature slug
(figure 4.1)—that can crawl along the ground. 4 It is attracted to light, and it follows temperature and humidity
gradients. These cues help it to move toward a more nourishing location. Once such a spot is found, the
pseudoplasmodium changes form again, this time differentiating into a stalk and a fruiting body—a spore mass
comprising about two-thirds of the cell count. When the spores are propagated, the cycle begins anew with a fresh
population of myxamoebae.
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How do the individual slime-mold cells (the myxamoebae) know to cluster? One solution—the biological analogue of a
central planner (see chapter 3)—would be for evolution to have elected "leader cells.” Such cells would be specially
adapted so as to "call” the other cells, probably by chemical means, when food ran low. And they would somehow
orchestrate the construction of the pseudoplasmodium. It seems, however, that nature has chosen a more democratic
solution. In fact, slime-mold cells look to behave rather like the ants described in section 2.3. When food runs low, each
cell releases a chemical (cyclic AMP) which attracts other cells. As cells begin to cluster, the concentrations of cyclic
AMP increases, thus attracting yet more cells. A process of positive feedback thus leads to the aggregation of cells that
constitutes a pseudoplasmodium. The process is, as Mitchel Resnick (1994, p. 51) notes, a nice example of what has
become known as self-organization. A self-organizing system is one in which some kind of higher-level pattern
emerges from the interactions of multiple simple components without the benefit of a leader, controller, or orchestrator.
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The themes of self-organization and emergence are not, | shall suggest, restricted to primitive collectives such as the
slime mold. Collectives of human agents, too, exhibit forms of emergent adaptive behavior. The biological brain, which
parasitizes the external world (see chapter 3) so as to augment its problem-solving capacities, does not draw the line at
inorganic extensions. Instead, the collective properties of groups of individual agents determine crucial aspects of our
adaptive success.

4.2 Two Forms of Emergence

There are at least two ways in which new phenomena can emerge (without leaders or central controllers) from
collective activity. The first, which | will call direct emergence, relies largely on the properties of (and relations
between) the individual elements, with environmental conditions playing only a background role. Direct emergence can
involve multiple homogeneous elements (as when temperature and pressure emerge from the interactions between the
molecules of a gas), or it can involve heterogeneous ones (as when water emerges from the interactions between
hydrogen and oxygen molecules). The second form of emergence, which I will call indirect emergence, relies on the
interactions of individual elements but requires that these interactions be mediated by active and often quite
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complex environmental structures. The difference thus concerns the extent to which we may understand the emergence
of a target phenomenon by focusing largely on the properties of the individual elements (direct emergence), versus the
extent to which explaining the phenomenon requires attending to quite specific environmental details. The distinction is
far from absolute, since all phenomena rely to some extent on background environmental conditions. (It can be made a
little more precise by casting it in terms of the explanatory roles of different kinds of "collective variables"—see
chapter 6). But we can get a working sense of the intuitive difference by looking at some simple cases.

A classic example of direct emergence is the all-too-familiar phenomenon of the traffic jam. A traffic jam can occur
even when no unusual external event (such as a collision or a broken set of traffic lights) is to blame. For example,
simple simulations recounted by Mitchel Resnick 2 show that bunching will occur if each car obeys just two intuitive
rules: "If you see another car close ahead, slow down; if not, speed up (unless you are already moving at the speed
limit)" (Resnick 1994, pp. 69, 73). Why, given just these two rules and no external obstacles, doesn't the traffic simply
accelerate to the speed limit and stay there? The answer lies in the initial placements. At the start of the simulation, the
cars were spaced randomly on the road. Thus, sometimes one car would start close to another. It would soon need to
slow down, which would cause the car behind it to slow, and so on. The upshot was a mixture of stretches of fast-
moving traffic and slow-moving jams. Every now and then a car would leave the jam, thus freeing space for the one
behind it, and accelerate away. But as fast as the jam "unraveled™ in one direction, it grew in the other direction as new
cars reached the backmarkers and were forced to slow. Although each car was moving forward, the traffic jam itself,
considered as a kind of higher-order entity, was moving backward! The higher-order structure (which Resnick calls the
collective structure) was thus displaying behavior fundamentally different from the behavior of its components. Indeed,
the individual components kept changing (as old cars left and new ones joined), but the integrity of the higher-order
collective was preserved. (In a similar fashion, a human body does not comprise the same mass of matter over
time—cells die and are replaced by new ones built out of energy from food. We, too, are higher-order collectives
whose constituting matter is in constant flux.) Traffic jams count as cases of direct
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emergence because the necessary environmental backdrop (varying distances between cars) is quite minimal—random
spacing is surely the default condition and requires no special environmental manipulations. The case of indirect
emergence, as we shall now see, is intuitively quite different.

Consider the following scenario: You have to remember to buy a case of beer for a party. To jog your memory, you
place an empty beer can on your front doormat. When next you leave the house, you trip over the can and recall your
mission. You have thus used what is by now a familiar trick (recall chapter 3)—exploiting some aspect of the real
world as a partial substitute for on-board memory. In effect, you have used an alteration to your environment to
communicate something to yourself. This trick of using the environment to prompt actions and to communicate signals
figures in many cases of what | am calling indirect emergence.

Take the nest-building behavior of some termites. A termite's building behavior involves modifying its local
environment in response to the triggers provided by previous alterations to the environment—alterations made by other
termites or by the same termite at an earlier time. Nest building is thus under the control of what are known as

stigmergic algorithms. 6

A simple example of stigmergy is the construction of arches (a basic feature of termite nests) from mudballs. Here is
how it works”: All the termites make mud balls, which at first they deposit at random. But each ball carries a chemical
trace added by the termite. Termites prefer to drop their mudballs where the chemical trace is strongest. It thus becomes
likely that new mudballs will be deposited on top of old ones, which then generate an even stronger attractive force.
(Yes, it's the familiar story!) Columns thus form. When two columns are fairly proximal, the drift of chemical
attractants from the neighboring column influences the dropping behavior by inclining the insects to preferentially add
to the side of each column that faces the other. This process continues until the tops of the columns incline together and
an arch is formed. A host of other stigmergic affects eventually yield a complex structure of cells, chambers, and
tunnels. At no point in this extended process is a plan of the nest represented or followed. No termite acts as a
construction leader. No termite "knows" anything beyond how to respond when confronted with a specific patterning of
its local environment. The termites do not talk to one another in any way, except through the environmental products of
their own
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activity. Such environment-based coordination requires no linguistic encoding or decoding and places no load on
memory, and the "signals™ persist even if the originating individual goes away to do something else (Beckers et al.
1994, p. 188).

To sum up: We learn important lessons from even these simple cases of emergent collective phenomena. Such
phenomena can come about in either direct or highly environmentally mediated ways. They can support complex
adaptive behaviors without the need for leaders, blueprints, or central planners. And they can display characteristic
features quite different in kind from those of the individuals whose activity they reflect. In the next section, we see
these morals in a more familiar, human guise.

4.3 Sea and Anchor Detail
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In the most successful and sustained investigation of the cognitive properties of human groups to date, Edwin
Hutchins—anthropologist, cognitive scientist, and open-ocean racing sailor and navigator—has described and analyzed
the role of external structures and social interactions in ship navigation. Here is his description of how some of the
necessary tasks are performed and coordinated (Hutchins 1995, p. 199; my note):

In fact, it is possible for the [navigation] team to organize its behavior in an appropriate sequence without there being a global
script or plan anywhere in the system. 8 Each crew member only needs to know what to do when certain conditions are produced
in the environment. An examination of the duties of members of the navigation team shows that many of the specified duties are
given in the form "Do X when Y." Here are some examples from the procedures:

Take soundings and send then to the bridge on request.

A.
B. Record the time and sounding every time a sounding is sent to the bridge.
C. Take and report bearings to the objects ordered by the recorder and when ordered by the recorder.

Each member of the navigation team, it seems, need follow only a kind of stigmergic® procedure, waiting for a local
environmental alteration (such as the placing of a specific chart on a desk, the arrival of a verbal request, or the
sounding of a bell) to call forth a specific behavior. That behavior, in turn, affects the local environment of certain other
crew members and calls forth further bursts of activity, and so on until the job is done.
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Of course, these are human agents, who will form ideas and mental models of the overall process. And this general
tendency, Hutchins observes, makes for a more robust and flexible system, since the individuals can monitor one
another's performance (e.g., by asking for a bearing that has not been supplied on time) and, if need be (say, if someone
falls ill), try to take over aspects of other jobs. Nonetheless, no crew member will have internalized all the relevant
knowledge and skills.

Moreover, a large amount of work is once again done by external structures: nautical slide rules, alidades, bearing
record logs, hoeys, charts, fathometers, and so on. 10 Such devices change the nature of certain computational problems
so as to make them more tractable to perceptual, pattern-completing brains. The nautical slide rule, Hutchins's favorite
example, turns complex mathematical operations into scale-alignment operations in physical space.11

Finally, and again echoing themes from chapter 3, the navigational work space itself is structured so as to reduce the
complexity of problem solving. For example, the charts that will be used when entering a particular harbor are
preassembled on a chart table and are laid one on top of the other in the order of their future use (the first-needed on

top).

All these factors, Hutchins argues, unite to enable the overall system of artifacts, agents, natural world, and spatial
organization to solve the problem of navigation. The overall (ship-level) behavior is not controlled by a detailed plan in
the head of the captain. The captain may set the goals, but the sequence of information gatherings and information
transformations which implement the goals need not be explicitly represented anywhere. Instead, the computational
power and expertise is spread across a heterogeneous assembly of brains, bodies, artifacts, and other external structures.
Thus do pattern-completing brains navigate the unfriendly and mathematically demanding seas.

4.4 The Roots of Harmony
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But how does such delicate harmonization of brains, bodies, and world come about? In the cases of what | have called
direct emergence the problem is less acute, for here the collective properties are determined directly by the mass action
of some uniform individual propensity. Thus, if
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nature were (heaven forbid) to evolve cars and roads, then (given random initial distribution and the two rules
rehearsed in section 4.2) traffic jams would immediately result.

Indirect emergence presents a superficially greater puzzle. In these cases, the target property (e.g., a termite nest or
successful navigation of a ship) emerges out of multiple and often varied interactions between individuals and a
complexly structured environment. The individuals are apparently built or designed so that the coupled dynamics of the
agents and these complex environments yield adaptive success. No single individual, in such cases, needs to know an
overall plan or blueprint. Yet the total system is, in a sense, well designed. It constitutes a robust and computationally
economical method of achieving the target behavior. How does such design come about?

For the nervous systems of the individual termites, an important part of the answer 12 is clearly "through evolution."
Hutchins suggests that a kind of quasi-evolutionary process may be at work in a navigation team too. The key feature is
simply that small changes occur without prior design activity, and these changes tend to be preserved according to the
degree to which they enhance biological success. Evolutionary change thus involves the gradual accretion of small
"opportunistic™ changes: changes which themselves alter the "fitness landscape" for subsequent changes both within the
species and in other species inhabiting the same ecosystem.

Now, still following Hutchins, consider the case in which some established cognitive collective (such as a navigation
team) faces a new and unexpected challenge. Suppose that this challenge calls for a fast response, so there is no time
for the group to meet and reflect on how best to cope.13 How, under such conditions, is the group to discover a new
social division of labor that responds to the environmental demand? What actually happens, Hutchins shows, is that
each member of the group tries to fulfill the basic functions necessary to keep the ship from going aground, but in so
doing each member constrains and influences the activity of the others in what amounts to a collective, parallel search
for a new yet computationally efficient division of labor. For example, one crew member realizes that a crucial addition
must be performed but does not have enough time. That crew member therefore tells a nearby person to add the
numbers. This in turn has effects further down the line. The solution to
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the problem of averting disaster emerges as a kind of equilibrium point in an iterated series of such local negotiations
concerning task distribution—an equilibrium point that is determined equally by the skills of the individuals and the
timing and sequence of incoming data. No crew member reflects on any overall plan for redistributing the tasks.
Instead, they all do what each does best, negotiating whatever local help and procedural changes they need. In such
cases there is a fast, parallel search for a coherent collective response, but the search does not involve any explicit and
localized representation of the space of possible global solutions. In this sense, as Hutchins notes, the new solution is
found by a process more akin to evolutionary adaptation than to global rationalistic design.

Here is a somewhat simpler version of the same idea 14 : Imagine that your task is to decide on an optimum placement
of footpaths to connect a complex of already-constructed buildings (say, on a new university campus). The usual
strategy is global rationalistic design, in which an individual or a small group considers the uses of the various
buildings, the numbers of pedestrians, etc. and seeks some optimal pattern of linkages reflecting the patterns of likely
use. An alternative solution, however, is to open the campus for business without any paths, and with grass covering all
the spaces between buildings. Over a period of months, tracks will begin to emerge. These will reflect both the real
needs of the users and the tendency of individuals to follow emerging trails. At the end of some period of time the most
prominent trails can be paved, and the problem will have been solved without anyone's needing to consider the global
problem of optimal path layout or needing to know or represent the uses of all the various buildings. The solution will
have been found by means of an interacting series of small individual calculations, such as "I need to get from here to
the refectory—how shall I do it?" and "I need to get to the physics lab as fast as possible—how shall | do it?" The
overall effect of these multiple local decisions is to solve the global problem in a way that looks more like a kind of
evolution than like classical, centralized design.

The need to account for the origins of collective success does not, it seems, force us back to the image of a central
planning agency that knows the shape of the overall problem space. Instead, we may sometimes structure our own
problem-solving environment as a kind of by-product of our basic problem-solving activity. On our hypothetical
campus, the early
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walkers structure the environment as a by-product of their own actions, but subsequent walkers will then encounter a
structured environment that may help them, in turn, to solve the very same problems. 15

4.5 Modeling the Opportunistic Mind

These first few chapters have, | hope, conveyed a growing sense of the opportunistic character of much of biological
cognition. For example: faced with the heavy time constraints on real-world action, and armed only with a somewhat
restrictive, pattern-completing style of on-board computation, the biological brain takes all the help it can get. This help
includes the use of external physical structures (both natural and artifactual), the use of language and cultural
institutions (see also chapters 9 and 10 below), and the extensive use of other agents. To recognize the opportunistic
and spatiotemporally extended nature of real problem solving is, however, to court a potential methodological
nightmare. How are we to study and understand such complex and often non-intuitively constructed extended systems?
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There is a classical cognitive scientific methodology that quite clearly won't do in such cases. This is the methodology
of rational reconstruction—the practice of casting each problem immediately in terms of an abstract input-output
mapping and seeking an optimal solution to the problem thus defined. Such a methodology, though perhaps never
defended in principle even by workers in classical Al, nonetheless seems to have informed a large body of research.16
Think of all those investigations of abstract microworlds: checkers, block placement, picnic planning, medical
diagnosis, etc. In all such cases, the first step is to cast the problem in canonical symbolic terms and the second is to
seek an efficient solution defined over a space of symbol-transforming opportunities.

Connectionists, likewise, were seen (chapter 3 above) to inherit a distressing tendency to study disembodied problem
solving and to opt for abstract, symbolically defined input-output mappings.L? Yet, from the perspectives on robotics
and on infancy gained in the early chapters, it now seems more reasonable to imagine that the real-body, real-world
setups of many tasks will deeply influence the nature of the problems they present to active, embodied agents. The real-
world problems will be posed in a milieu that includes the spring-like properties of muscles and the
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presence of real, spatially manipulable objects. Such differences, as | have been at pains to show, can often make all the
difference to the nature of a computational task.

In fact, the methodology of rational reconstruction can mislead in several crucial ways. First, the immediate
replacement of real physical quantities with symbolic items can obscure opportunistic strategies that involve acting
upon or otherwise exploiting the real world as an aid to problem solving. (Recall the 007 Principle.) Second,
conceptualizing the problem in terms of an input-output mapping likewise invites a view of cognition as passive
computation. That is, it depicts the output phase as the rehearsal of a problem solution. But we have now seen many
cases (e.g., the strategies of animate vision and the use of the rotation button in Tetris) in which the output is an action
whose role is to unearth or create further data that in turn contribute to ultimate success. These cases of what Kirsh and
Maglio called "epistemic action" 18 threaten to fall through the cracks of any fundamentally disembodied, input-output
vision of cognitive success. (A third threat is that the search for optimal solutions may further mislead by obscuring the
role of history in constraining the space of biologically plausible solutions. Nature, as we shall see in chapter 5, is
heavily bound by achieved solutions to previously encountered problems. As a result, new cognitive garments seldom
are made of whole cloth; usually they comprise hastily tailored amendments to old structures and strategies.)

For all these reasons, the methodology of rational reconstruction seems to do extreme violence to the shape and nature
of biological cognition. In its place, we may now glimpse the barest outlines of an alternative methodology—a
methodology for studying embodied, active cognition. The key features of this methodology seem to be the following:

real-world, real-time focus Tasks are identified in real-world terms. Inputs are physical quantities, outputs are actions.
Behavior is constrained to biologically realistic time frames.

awareness of decentralized solutions It is not simply assumed that coordinated intelligent action requires detailed
central planning. Often, globally intelligent action can arise as a product of multiple, simpler interactions involving
individuals, components, and/or the environment.

an extended vision of cognition and computation Computational processes are seen as (often) spread out in space and
time. Such processes can
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extend outside the head of an individual and include transformations achieved using external props, and they can
incorporate the heads and bodies of multiple individuals in collective problem-solving situations.

Thus construed, the study of embodied active cognition clearly presents some major conceptual and methodological
challenges. These include (but, alas, are not exhausted by) the following:

the problem of tractability How—given this radically promiscuous view of cognition as forever leaking out into its
local surroundings—are we to isolate tractable phenomena to study? Doesn't this rampant cognitive liberalism make
nonsense of the hope for a genuine science of the mind?

the problem of advanced cognition How far can we really hope to go with a decentralized view of mind? Surely there is
some role for central planning in advanced cognition. What, moreover, of the vision of individual reason itself? What
image of rational choice and decision making is implicit in a radically emergentist and decentralized view of adaptive
success?

the problem of identity Where does all this leave the individual person? If cognitive and computational processes are
busily criss-crossing the boundaries of skin and skull, does that imply some correlative leakage of personal identity into
local environment? Less mysteriously, does it imply that the individual brain and the individual organism are not
proper objects of scientific study? These would be unpalatable conclusions indeed.

We have here a mixed bag of practical worries (How can we study the embodied embedded mind?), unsolved problems
(Will the same type of story work for truly advanced cognition?), and conceptual anomalies (Does leaky cognition
imply leaky persons? Are brains somehow improper objects of study?). In the remaining chapters, | shall address all
these issues. In particular, 1 shall try to respond in detail to the methodological and practical worries (chapters 5-7), to
clarify the conceptual problems (chapters 6 and 8), and to begin to address the pressing problem of advanced cognition
(chapters 9 and 10). The key to integrating the facts about advanced cognition with the vision of embodied active
cognition lies, I shall suggest, in better understanding the roles of two very special external props or scaffolds: language
and culture.

In sum: The death of rational reconstruction creates something of a conceptual and methodological vacuum. Our
remaining task is to fill the void.
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Intermission: A Capsule History

Cognitive science, as sketched in the preceding chapters, can be seen in terms of a three-stage
progression. The first stage (the heyday of classical cognitivism) depicted the mind in terms of a central
logic engine, symbolic databases, and some peripheral "sensory"” modules. Key characteristics of this
vision included these ideas:

memory as retrieval from a stored symbolic database,
problem solving as logical inference,
cognition as centralized,
the environment as (just) a problem domain,
and
the body as input device.

The connectionist (artificial neural network) revolution took aim at the first three of these
characteristics, replacing them with the following:

memory as pattern re-creation,

problem solving as pattern completion and pattern transformation,
and

cognition as increasingly decentralized.

This radical rethinking of the nature of the inner cognitive engine, however, was largely accompanied by
a tacit acceptance of the classical marginalization of body and world. It is this residual classicism which
the kind of research reported earlier confronts head on. In this research, the most general tenets of the
connectionist view are maintained, but they are augmented by a vision of

the environment as an active resource whose intrinsic dynamics can play
important problem-solving roles



Page 84

and
the body as part of the computational loop.

To thus take body and world seriously is to invite an emergentist perspective on many key
phenomena—to see adaptive success as inhering as much in the complex interactions among body,
world, and brain as in the inner processes bounded by skin and skull. The challenges for such an
approach, however, are many and deep. Most crucial is the pressing need to somehow balance the
treatment of the internal (brain-centered) contribution and the treatment of external factors in a way that
does justice to each. This problem manifests itself as a series of rather abstract-sounding worries—but
they are worries with major concrete consequences for the conduct and the methodology of a science of
the embodied mind. These worries include

finding the right vocabulary to describe and analyze processes that
criss-cross the agent/environment boundary,
isolating appropriate large scale systems to study and motivating some
decomposition of such systems into interacting component parts and
processes,

and
understanding familiar terms such as 'representation’, ‘computation’,
and 'mind' in ways which fit the new picture (or else rejecting such
terms entirely).

In short: How should we think about the kind of phenomena we have displayed—and how many of our
old ideas and prejudices will we have to give up to do so? This is the topic of part Il.
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I
Explaining the Extended Mind
Our own body is in the world as the heart is in the organism ... it forms with it a system.

—NMaurice Merleau-Ponty, Phenomenology of Perception; passage translated by David Hilditch in his Ph.D. thesis,
At the Heart of the World (Washington University, 1995)



Page 87

5
Evolving Robots

5.1 The Slippery Strategems of the Embodied, Embedded Mind

How should we study the embodied, embedded mind? The problem becomes acute once we realize that
nature's solutions will often confound our guiding images and flout the neat demarcations (of body,
brain, and world) that structure our thinking. The biological brain is, it seems, both constrained and
empowered in important and sometimes non-intuitive ways. It is constrained by the nature of the
evolutionary process—a process that must build new solutions and adaptive strategies on the basis of
existing hardware and cognitive resources. And it is empowered, as we have seen, by the availability of
a real-world arena that allows us to exploit other agents, to actively seek useful inputs, to transform our
computational tasks, and to offload acquired knowledge into the world.

This combination of constraints and opportunities poses a real problem for the cognitive scientist. How
can we model and understand systems whose parameters of design and operation look (from an
ahistorical, disembodied design perspective) so messy and non-intuitive? One partial solution is to
directly confront the problem of real-world, real-time action, as in the robotics work surveyed in chapter
1. Another is to attend closely to the interplay between cognition and action in early learning, as in the
developmental research discussed in chapter 2. An important additional tool—the focus of the present
chapter—is the use of simulated evolution as a means of generating control systems for (real or
simulated) robots. Simulated evolution (like neural network learning) promises to help reduce the role of
our rationalistic prejudices and predispositions in the search for efficient solutions.

Page 88

5.2 An Evolutionary Backdrop



Naturally evolved systems, it has often been remarked, simply do not function the way a human designer
might expect. 1 There are several reasons for this. One, which we have already seen exemplified many
times over, involves a propensity for distributed solutions. The now-familiar point is that where a human
designer will usually build any required functionality directly into a distinct device for solving a given
problem, evolution is in no way constrained by the boundaries between an organism or device and the
environment. Problem solving easily becomes distributed between organism and world, or between
groups of organisms. Evolution, having in a very real sense no perspective on a problem at all, is not
prevented from finding cheap, distributed solutions by the kinds of blinkers (e.g., the firm division
between device and operating domain) that help human engineers focus their attention and decompose
complex problems into parts.

This is not, however, to suggest that principles of decomposition play no role in natural design. But the
kind of decomposition that characterizes design by natural selection is a very different beast indeed. It is
a decomposition dictated by the constraint of evolutionary holism—a principle, explicitly formulated by
Simon (1969), which states that complex wholes will usually be developed incrementally over
evolutionary time, and that the various intermediate forms must themselves be whole, robust systems
capable of survival and reproduction. As Dawkins (1986, p. 94) puts it, the key is to think in terms of
trajectories or paths though evolutionary time, with whole successful organisms as steps along the way.

This is a strong constraint. A wonderfully adaptive complex design that lacks any such evolutionary
decomposition (into simpler but successful ancestral forms) will never evolve. Moreover, the transitions
between forms should not be too extreme: they should consist of small structural alterations, each of
which yields a whole, successful organism.

One story has it, for example,2 that our lungs evolved from a foundation provided by the swim bladders
of fish. Swim bladders are sacs of air that facilitate movement in watery environments. It has been
suggested that our current susceptibility to pleurisy and emphysema can be traced to features of the
swim-bladder adaptation. Lieberman (1984, p. 22) is

Page 89

thus led to comment that "swim bladders are logically designed devices for swimming—they constitute
a Rube Goldberg system for breathing."
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The moral is an important one. It is that the constraints of evolutionary holism, coupled with the need to
proceed via small incremental changes to existing structures, can yield solutions to current problems that
owe a great deal to their particular historical antecedents. As the cell geneticist Frangois Jacob (1977, p.
1163) put it: "Simple objects are more dependent on (physical) constraints than on history. As
complexity increases, history plays the greater part.” Jacob likens evolution to a tinkerer rather than an
engineer. An engineer sits down at a blank drawing board and designs a solution to a new problem from
scratch; a tinkerer takes an existing device and tries to adapt it to some new purpose. What the tinkerer
produces may at first make little sense to the engineer, whose thinking is not constrained by available
devices and ready-to-hand resources. Natural solutions to the problems faced by complex evolved
creatures may likewise appear opaque from a pure, ahistorical design perspective.

One way to begin to understand such initially opaque, historically path-dependent and opportunistic
problem solutions is to try artificially to recapitulate the evolutionary process itself: set a tinkerer to
catch a tinkerer. Enter the genetic algorithm.

5.3 Genetic Algorithms as Exploratory Tools

Biological evolution, as we all know, works by a process of diversification and selection. Given some
population of organisms, and given variety within that population, some will do better at survival and
reproduction than others. Add to this a mechanism of transmission, which causes the descendants of the
fittest to inherit some of the structure of their forebears, and the minimal conditions for evolutionary
search are in place. Transmission normally involves inbuilt means of further variation (e.g., mutation)
and diversification (e.g., the splitting and recombination processes characteristic of sexual reproduction).
By an iterated sequence of variations, diversifications, selections, and transmissions, the evolutionary
process performs a search in the space of structural options—a search that will tend to zero in on the
fitter solutions to the problems of survival and reproduction.
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Genetic algorithms 3 simulate this kind of evolutionary process. The population initially consists of a
variety of software individuals, either hand coded or randomly generated. Such "individuals" might be
lines of code, data structures, whole hierarchical computer programs, neural networks, or whatever. The
individuals are then allowed to behave—to act in some environment in ways that will allow the
computation, after some time, of a measure of fitness for each one. (How much food did it find? Did it
avoid predators? ...) The initial coding for the fittest individuals (usually stored as binary strings) is then
used as a basis for reproduction (i.e., for generating the next population). But instead of simply copying
the most successful individuals, operations of crossover and mutation are employed. In mutation, a small
random change is made to the structure of the coding for an individual. For example, if the individual is
a neural network, a few weights might be subtly varied. In crossover, parts of the codings for two
individuals are recombined so as to mimic the rough dynamics of sexual reproduction. The new
generation is thus based on the most successful variants among the old, but continues the process of
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searching for efficient solutions by investigating some of the space surrounding the previous good
solutions. This process, when iterated over hundreds of thousands of generations, constitutes (in certain
problem domains) a powerful version of gradient-descent search4—except that here the learning
increments occur generation by generation instead of during an individual lifetime.

Such techniques have been used to evolve problem solutions in a wide variety of domains, from trail
following in artificial ants (Jefferson et al. 1990; Koza 1991), to discovering laws of planetary motion
(Koza 1992), to evolving neural network controllers for artificial insects (Beer and Gallagher 1992). The
latter kind of use is especially interesting insofar as it allows us to study the effects of incremental
evolutionary learning in settings that include rich bodily and environmental dynamics, as we shall now
see.

5.4 Evolving Embodied Intelligence

Walking, seeing, and navigating are fundamental adaptive strategies exploited by many evolved
creatures. Can simulated evolution help us to understand them better? The answer looks to be a tentative
Yes.
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Consider walking. Randall Beer and John Gallagher (1992) have used genetic algorithms to evolve
neural network controllers for insect locomotion. These evolved controllers turn out to exploit a variety
of robust and sometimes nonobvious strategies. Many of these strategies rely on close and continued
interactions between the controller and the environment and do not involve the advance construction of
detailed and explicit motor programs. Moreover, the best of the controllers were able to cope with a
variety of challenging situations, including operation with and without sensory feedback and including
automatic compensation for certain kinds of structural change.

Beer and Gallagher's robot insect was a kind of simulated cockroach 2 with six legs. Each leg was
jointed and could have its foot up or down. A sensor on each leg reported the angle of the legs relative to
the body. The simulated insect was controlled by a network of neural nets (each leg had a dedicated five-
neuron network controller). Each five-neuron subnet included three motor neurons driving the leg and
two "extra" neurons whose role was left open. Each subnet received input from the sensor associated
with the leg it controlled. A genetic algorithm (see section 5.3) was used to discover a set of features
(such as connection weights—see chapter 3) that would enable this kind of control architecture to
generate stable and robust locomotion. This, in turn, involved finding weights, biases, and time
constants (response speeds) capable of generating a viable motion pattern for each leg, and also
coordinating the motions of all the legs.
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Beer and Gallagher evolved eleven controllers, each of which used a different set of weights and
parameter values. All the controllers produced good locomotion, and all used the "tripod gait™ favored
by real fast-walking insects.

The importance of the controller-environment interaction was demonstrated by evolving solutions in
three different settings. In the first setting, evolutionary search occurred with leg sensors operative.
Under these conditions, unsurprisingly, the final solutions relied heavily on continued sensory feedback.
If the sensor were subsequently disabled, locomotion was lost or badly disrupted. In the second setting,
evolutionary search occurred without sensory feedback. Under these "blind" conditions, solutions were
discovered that relied only on central pattern generators and hence produced a somewhat clumsy but
reliable locomotion akin to that of a toy robot.
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More interesting by far were the results obtained when sensory feedback was intermittently present
during evolutionary search. Under these uncertain conditions, controllers evolved that could produce
smooth walking using sensory feedback when available, switch to "blind" pattern generation in the
absence of sensory feedback (and hence produce viable albeit less elegant locomotion), and even
compensate automatically for certain structural changes (e.g., alterations of leg length, such as occur
during biological growth). The explanation of this last property involves the modulation exercised by
sensory feedback on the pattern generator in these "mixed" solutions. The altered leg length affects the
readings at the sensor, and this causes a commensurate slowing of the motor output generator. This kind
of automatic compensation has a biologically realistic flavor—think of how a cat automatically adopts a
new three-legged gait when one leg is injured, or how a human being adapts to walking on an icy
surface or with a sprained ankle. Yet, as Beer (1995b) points out, this kind of adaptation is not a result of
individual learning as such—rather, the adaptation is inherent in the original dynamics of the system,
and the new situation (damage, leg growth, or whatever) merely causes it to be displayed.

Overall, the kind of solution embodied in the mixed controller involves such a subtle balancing of
central pattern generation and sensory modulation that, Beer suggests, the design might easily have
eluded a human analyst. By using the genetic algorithm, solutions can be found that truly make the most
of whatever environmental structure is available and which are not hobbled by our natural tendency to
seek neat, clean, easily decomposable problem solutions. Of course, the bad news about messier, more
biologically realistic and interactive solutions is that they are not just hard to discover but also hard to
understand once we have them. We shall return to this problem in section 5.7.

Further experiments echo Beer and Gallagher's results in other domains. Harvey et al. (1994) evolved
control systems for visually guided robots, and Yamuchi and Beer (1994) have evolved networks
capable of controlling a robot that used sonar input to perform landmark recognition and navigation.
Johnson et al. (1994) used genetic programming to evolve animate-vision-style routines for the
computationally cheap solution of ecologically realistic visual processing tasks (recall chapter 1),
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finding evolved solutions which significantly outperformed the best programs they were able to produce
by hand. There is thus ample evidence of the power of simulated evolutionary search to unearth robust
and unobvious solutions to biologically realistic problems. This optimistic statement, however, should
be tempered by the recognition of several severe limitations that afflict most of the work in this field.
The most important of those limitations are the "freezing" of the problem space, the use of fixed neural
and bodily architectures, the lack of a rich phenotype/genotype distinction, and the problem of "scaling
up"” in evolutionary search.

By the "freezing" of the problem space | mean the tendency to predetermine a fixed fitness function and
to use simulated evolution merely to maximize fitness relative to this preset goal (walking, navigating,
or whatever). This approach ignores one of the factors that most strongly differentiate real evolutionary
adaptation from other forms of learning: the ability to coevolve problems and solutions. A classic
example is the coevolution of pursuit and evasion techniques in animal species. & The crucial point is
just that natural evolution does not operate so as to "solve" a fixed problem. Instead, the problems
themselves alter and evolve in a complex web of coevolutionary change.

Equally problematic is the tendency to search a problem space partially defined by some fixed bodily or
neural architecture. Once again, these searches freeze parameters that, in the natural world, are
themselves subject to evolutionary change. For example, the simulated cockroach had a fixed bodily
shape and a fixed set of neural resources. Real evolutionary search, in contrast, is able to vary both

bodily shape’ and gross neural architecture.

Another biological distortion involves the use of rather direct genotype-phenotype mappings. In
standard genetic-algorithm search, the new populations of individuals are fully specified by their
genotypes. In contrast, the way real genes become expressed in real bodies allows a much greater role
for environmental interactions over individual developmental time. In fact, the image of genes "coding
for" physical features is often quite misleading. Rather, genes code for possible physical features, in
ways that depend heavily on a variety of environmental factors which affect their expression. The
capacity to select genetic factors whose ultimate expression
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in individuals remains under a large degree of environmental control allows biological evolution to
exploit several degrees of freedom not present in most artificial models. &

Finally, there is a widely acknowledged problem of "scaling up." Most of the work reported above uses
genetic search applied to relatively small neural network controllers. As the number of parameters
characterizing the controllers increases, standard varieties of evolutionary search become increasingly
inefficient. The key to overcoming this problem seems to lie in some combination of better genetic
encodings and the "offloading” of some of the burden onto the environment (i.e., reducing the amount of
information encoded in the genotype by relying on developmental interactions with a structuring
environment). In this way, the scaling problem and the previous phenotype/genotype problem may be

more closely linked than is initially apparent.2

Clearly, then, the use of simulated evolution is far from being a panacea for autonomous-agent research.
Nonetheless, such methods have already won a place in the tool kit of the cognitive sciences of the
embodied mind. Exactly how central a place will depend also on the resolution of a rather vigorous in-
house dispute concerning the legitimacy and the value of using simulated agents and environments in
understanding embodied, active cognition.

5.5 SIM Wars (Get Real!)

Acrtificial evolution takes place, by and large, in populations of simulated organisms attempting to
negotiate simulated environments. But the use of simulations is itself a point of contention within the
community of researchers studying embodied, embedded cognition. On the one hand, the use of
simulated worlds and agents provides clear benefits in terms of problem simplification and the
tractability of studying large populations. On the other hand, one of the major insights driving much
autonomous-agent research is precisely a recognition of the unsuspected complexity of real agent-
environment interactions and of the surprising ways in which real-world features and properties can be
exploited by embodied beings. Fans of real-world robotics10 note that researchers routinely
underestimate the difficulty of problems (by ignoring such real-world features as
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noise and the unreliability of mechanical parts) and also fail to spot quick and dirty solutions that depend
on such gross physical properties as the elasticity and "give" of certain parts. 11

A useful nonrobotic example of the role of such physical properties is developed by Tim Smithers
(1994, pp. 64-66) in his account of "hunting,” a phenomenon associated with the second generation of
fly-ball governors used to regulate the power outputs of early steam engines. Fly-ball governors (also
known as Watt governors after their inventor, James Watt) are used to maintain constant speed in a
flywheel, run off a steam engine, to which other machinery is connected. Without governance, the speed
of the flywheel varies according to steam fluctuations, workload alterations, and other factors. The
governor is based on a vertical spindle geared to the main flywheel. The spindle has two arms, attached
by hinges, each of which has a metal ball at the end. The arms swing out as the flywheel turns, to a
degree determined by the speed of rotation. The arms directly operate a throttle valve that reduces the
flow of steam as the arms raise (and hence as the speed of the flywheel increases) and increases it as the
arms lower (and hence as the speed of the flywheel decreases). This arrangement maintains a constant
speed of rotation of the flywheel, as is required for many industrial applications. With increased
precision of manufacture, Smithers notes, a new generation of governors began to exhibit a problem not
seen in the earlier, "cruder™ versions. The new, finely machined governors would often fail to determine
a single fixed speed of rotation, and would instead oscillate between slowing down and speeding up.
This "hunting" for a constant speed occurred because the new governors were reacting too quickly to the
main shaft's speed and thus, in effect, overcorrecting each time. Why did the early, crude versions
outperform their finely engineered successors? The reason was that friction between joints, bearings,
and pulleys was, in the early versions, sufficient to damp the system's responses, thus protecting it from
the looping cycles of rapid overcompensation observed in the newer machines. Modern regulators, we
are told, rely on additional components to prevent hunting, but these pay a price in being more difficult
to set up and use (ibid., p. 66).

Smithers shows that attempts to fine tune the sensory systems of simple real-world robots can run into
similar problems. If robot behavior depends closely on sensor readings, highly sensitive devices can
become
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overresponsive to small perturbations caused by relatively insignificant environmental changes, or even
by the operation of the sensor itself. Increased resolution is thus not always a good thing. By using less
accurate components, it is possible to design robots in which properties of the physical device (e.g.,
mechanical and electrical losses) act so as to damp down responses and hence avoid undesirable
variations and fluctuations. As a result, Smithers suggests, it may even be misleading to think of the
sensors as measuring devices—rather, we should see them as filters whose role is, in part, to soak up
behaviorally insignificant variations so as to yield systems able to maintain simple and robust
interactions with their environment. Real physical components, Smithers argues, often provide much of
this filtering or sponge-like capacity "for free" as a result of mechanical and electrical losses inherent in
the physical media. These effects, clearly, will not be available "for free" in simulated agent-
environment systems. Simulation-based work is thus in danger of missing cheap solutions to important
problems by failing to recognize the stabilizing role of gross physical properties such as friction and
electrical and mechanical loss.

Another problem with a pure simulation-based approach is the strong tendency to oversimplify the
simulated environment and to concentrate on the intelligence of the simulated agent. This furthers the
deeply misguided vision of the environment as little more than the stage that sets up a certain problem.
In contrast, the arguments of the previous chapters all depict the environment as a rich and active
resource—a partner in the production of adaptive behavior. Related worries include the relative poverty
of the simulated physics (which usually fails to include crucial real-world parameters, such as friction
and weight), the hallucination of perfect information flow between "world" and sensors, and the
hallucination of perfectly engineered and uniform components 12 (e.g., the use of identical bodies for all
individuals in most evolutionary scenarios). The list could be continued, but the moral is clear.
Simulation offers at best an impoverished version of the real-world arena, and a version impoverished in
some dangerous ways: ways that threaten to distort our image of the operation of the agents by
obscuring the contributions of environmental features and of real physical bodies.
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For all that, the benefits of a judicious use of simulation can be large, especially when investigating
evolutionary change. Large simulated populations are cheap to produce and easy to monitor. Fitness
evaluation can be automated relative to behavior within the virtual environment. Real-world engineering
problems are completely bypassed. In addition, large-scale simulated evolution offers vast time savings
in comparison with the use of repeated real-world runs and evaluations.

For practical purposes, then, a mixed strategy seems to be indicated. Thus, theorists such as Nolfi,
Miglino, and Parisi (1994) and Yamuchi and Beer (1994) use simulations for initial research and
development and then transfer the results into real mobile robots. Of course, neural network controllers
evolved to guide a simulated robot will hardly ever transfer without problems to a real-world system.
But the simulation phase can at least be used to achieve rough settings for a variety of parameters, which

can then be further tuned and adapted in the real-world setting. 13

Finally, it should be noted that even pure simulation-based research can be immensely valuable, insofar
as it allows the investigation of general issues concerning (e.g.) the interplay between individual
learning and evolutionary change (Ackley and Littman 1992; Nolfi and Parisi 1991) and the properties
of large collectives of very simple agents (Resnick 1994). As a means of understanding the detailed
dynamics of real agent-environment interactions, however, simulations must always be taken with a
large pinch of salt.

5.6 Understanding Evolved, Embodied, Embedded Agents

The process of natural design, it seems, will routinely outrun the imaginings of human theorists. In
particular, biological evolution cares nothing for our neat demarcation between the merely physical and
the computational or informational. Gross physical features such as mechanical and electrical loss,
friction, and noise can all be exploited alongside familiar computational strategies (e.g., neural network
learning) so as to yield robust solutions to problems of surviving and responding. Moreover, as we have
seen repeatedly in previous chapters, the environment can be actively exploited so as to transform the
nature of the problems we confront. And, as was remarked in section 5.2, biological evolution must
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often tinker with old resources so as to yield new capacities: cognitive innovation is thus seldom made
from whole, ideally engineered cloth. These factors conspire to render biological design curiously
opaque. Take a videocassette recorder apart and you find a well-demarcated set of modules and circuit
boards, each of which plays a delimited and specific role in yielding successful performance. That's
because human designers (unsurprisingly) opt for the kind of overall componential design that makes
most sense to serial, conscious reflection. The human brain appears to involve much less transparent
kinds of componential structure and wiring, including vast amounts of recurrent circuitry which allow
mutual and iterated modifications between many areas. And the role of the brain, in any case, is merely
to get the body to go through the right motions. Adaptive success finally accrues not to brains but to
brain-body coalitions embedded in ecologically realistic environments. A large and currently unresolved
question therefore looms: How are we to study and understand (not just replicate) the adaptive success
of biological creatures—creatures whose design principles do not respect the intuitive boundaries
between cognition, body, and world?

One possibility, currently gaining ground, is to replace the standard cognitive-scientific tools of
computational theorizing and representation talk with those of Dynamical Systems theory. The argument
goes like this: The image of cognition as the generation of computational transformation of internal
representations is (it is said) a throwback to the idea of the brain as, in essence, the seat of a
fundamentally disembodied kind of intelligence. It is a throwback because representations, thus
conceived, are supposed to stand in for real-world items and events, and reasoning is supposed to occur
in a kind of inner symbolic arena. But real embodied intelligence, we have seen, is fundamentally a
means of engaging with the world—of using active strategies that leave much of the information out in
the world, and cannily using iterated, real-time sequences of body-world interactions to solve problems
in a robust and flexible way. The image here is of two coupled complex systems (the agent and the
environment) whose joint activity solves the problem. In such cases, it may make little sense to speak of
one system's representing the other.

The idea can be elusive, so an example may help. Tim van Gelder invites us to consider, in this light, the
operation of the Watt governor
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described in section 5.5. The governor, recall, maintains the flywheel at a constant speed by using two
weighted arms which swing out so as to close the throttle valve as speed of rotation increases and open it
as speed decreases. Van Gelder (1995, p. 348) contrasts this with the operation of an imaginary
“computational governor" that would operate as follows:

Measure the speed of the flywheel.

Compare the actual speed against the desired speed.
If there is a discrepancy, then

measure the current steam pressure,

calculate the desired alteration in steam pressure,
calculate the necessary throttle-valve adjustment.
Make the throttle-valve adjustments. Return to step 1.

The computational governor thus uses explicit measurements of speed and steam pressure, which are fed
into further processes for calculating the necessary adjustments. The Watt governor, in contrast, folds
the stages of measurement, computation and control into a single process involving the reciprocal
influences of the speed and angle of the arm and the speed of the engine. The best way to understand the
operation of the Watt governor, van Gelder notes, is to think not in terms of representations and
computations but in terms of feedback loops and closely coupled physical systems. Such phenomena are
the province of standard Dynamical Systems theory. Let us pause to make its acquaintance.

Dynamical Systems theory is a well-established framework 14 for describing and understanding the
behavior of complex systems (see, e.g., Abraham and Shaw 1992). The core ideas behind a Dynamical
Systems perspective are the idea of a state space, the idea of a trajectory or a set of possible trajectories
through that space, and the use of mathematics (either continuous or discrete) to describe the laws that
determine the shapes of these trajectories.

The Dynamical Systems perspective thus builds in the idea of the evolution of system states over time as
a fundamental feature of the analysis. As a general formalism it is applicable to all existing
computational systems (connectionist as well as classicist), but it is also more general, and it can be
applied to the analysis of noncognitive and noncomputational physical systems as well.
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The goal of a Dynamical Systems analysis is to present a picture of a state space whose dimensionality
is of arbitrary size (depending on the number of relevant system parameters), and to promote an
understanding of system behaviors in terms of location and motion within that abstract geometric space.
To help secure such an understanding, a variety of further constructs are regularly invoked. These
constructs capture the distinctive properties of certain points or regions (sets of points) in the space as
determined by the governing mathematics. The mathematics typically specifies a dynamical law that
determines how the values of a set of state variables evolve through time. (Such a law may consist, for
example, in a set of differential equations.) Given an initial state, the temporal sequence of states
determined by the dynamical law constitutes one trajectory through the space. The set of all the
trajectories passing through each point is called the flow, and its shape is the typical object of study. To
help understand the shape of the flow, a number of constructs are used, including that of an attractor (a
point or a region) in the space such that the laws governing motion through the space guarantee that any
trajectory passing close to that region will be "sucked into" it. Related concepts include the "basin of
attraction” (the area in which an attractor exerts its influence) and "bifurcations"” (cases where a small
change in the parameter values can reshape the flow, yielding a new "phase portrait"—i.e., a new
depiction of the overall structure of basins and boundaries between basins).

The Dynamical Systems approach thus provides a set of mathematical and conceptual tools that support
an essentially geometric understanding of the space of possible system behaviors. To get the flavor of
these tools in use, consider once again the work on evolving insect leg controllers described in section
5.4. In attempting to understand the operation of a single leg controller, 12 Beer (1995b) highlights the
role of a systematic flipping between two fixed-point attractors. The first comes into play when a foot
has just been put down and a "stance phase™ has begun. The evolution of this state takes the system close
to a fixed-point attractor. As the leg continues to move, however, this attractor disappears to be replaced
by a second attractor elsewhere in the state space, toward which the system state then evolves. This
second attractor corresponds to a "swing phase." The switch between these fixed points is due to a set of
bifurca-
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tions that occur as the leg moves through a certain angle. The effect of this is to switch the phase portrait
of the controller between the two fixed-point attractors. Should the leg-angle sensor be disabled, the
dynamics collapses to a fixed point, freezing the insect into a permanent stance phase. Notice especially
that the dynamics Beer describes belong not to the neural network controller per se but rather to the
coupled system comprising the controller and the insect body (leg). It is the reciprocal interplay of
controller and leg (mediated by the leg sensor's angle-detecting capacity) that yields the state-space
trajectory just described.

This kind of geometric, state-space-based understanding is, to be sure, both valuable and informative. It
remains an open question, however, to what extent such explanations can replace, rather than merely
complement, more traditional understandings couched in terms of computational transitions and inner
representational states. The radical position (which predicts the wholesale replacement of computation
and representation talk by geometric Dynamical Systems talk) faces two crucial challenges.

The first challenge concerns scaling and tractability. Even the 30-neuron leg controller constitutes a
dynamical system of such complexity that our intuitive geometric understanding breaks down.
Moreover, the detailed mathematics of Dynamical Systems theory becomes steadily less tractable as the
number of parameters and the size of the state space increase. As a result, Beer's analysis was in fact
conducted only for a simpler, five-neuron system controlling a single leg. The practical applicability of
Dynamical Systems theory to highly complex, high-dimensional, coupled systems (like the human
brain) must therefore be in serious doubt.

The second and more fundamental challenge concerns the type of understanding such analyses provide.
This type of understanding threatens to constitute abstract description rather than full explanation. We
learn what the system does and when it does it, and what patterns of temporal evolution its behavior
displays; but this understanding, although valuable, does not seem to be exhaustive. In particular, we are
often left—as | will later argue in detail—with an impoverished understanding of the adaptive role of
components, and of the internal functional organization of the system.

The best aspects of the dynamical analyses, | suggest, are their intrinsic temporal focus and their easy
capacity to criss-cross brain/body/
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environment boundaries. | shall highlight the temporal issues in a subsequent chapter. The boundary
issue should already be clear: By treating the brain as a dynamical system, we treat it in essentially the
same terms as we treat bodily mechanics and environmental processes. As a result, it becomes especially
easy and natural to characterize adaptive behavior in terms of complex couplings of brains, bodies, and
environment.

| propose, therefore, to argue for a somewhat ecumenical stance. The tools of Dynamical Systems theory
are a valuable asset for understanding the kinds of highly environmentally coupled behaviors I have
highlighted. But they should be treated as complementary to the search for computational and
representational understandings. The case for complementarity will occupy us for the next several
chapters.
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6
Emergence and Explanation

6.1 Different Strokes?

What kind of tools are required to make sense of real-time, embodied, embedded cognition? In particular, is there a
range of emergent phenomena that depend so closely on the coupling of brain, body, and world that traditional analyses
are bound to fail? I shall argue that emergent phenomena do demand some new modes of explanation and study, but
that these new modes are best seen as complementary to (not in competition with) more familiar analytic approaches.
Certainly, we will see an increasing sensitivity to what might be termed the ecological 1 determination of the roles of
various inner states and processes (i.e., the way what needs to be internally represented and computed is informed by
the organism's location in, and interactions with, a wider environment). And certainly, we will see the flip side of this
same sensitivity: increased attention to the overall dynamics of whole organism/environment systems. But neither of
these developments compromises our need to understand the contribution of neurophysiologically real components to
the psychologically characterized abilities of an agent—a project that still appears to require the use of some quite
traditional analytic tools. A successful cognitive science, | shall argue, will thus study both the larger dynamics of
agent/environment systems and the computational and representational microdynamics of real neural circuitry.

6.2 From Parts to Wholes

In this section | distinguish three styles of cognitive scientific explanation. The styles are quite general, and they cross-
classify particular programming styles (such as connectionist vs. classicist).
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Componential Explanation

To explain the functioning of a complex whole by detailing the individual roles and the overall organization of its parts
is to engage in componential 2 explanation. This is the natural explanatory style to adopt when, for example, we explain
the workings of a car, a television set, or a washing machine. We explain the capacities of the overall system by
adverting to the capacities and roles of its components, and the way they interrelate.
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Componential explanation, thus construed, is the contemporary analogue to good old-fashioned reductionistic
explanation. | avoid the vocabulary of reduction for two reasons. First, much of the philosophical discussion about
reduction assumed that reduction named a relation between theories, and that theories were linguaform, law-involving
constructs. But in many cases (especially biology and artificial intelligence) what we might otherwise naturally think of
as reductive explanations do not take this form. Instead, they involve the development of partial models which specify
components and their modes of interaction and which explain some high-level phenomena (e.g. being a television
receiver) by adverting to a description of lower-level components and interactions.3 These are reductionist explanations
in a broader sense—one which "componential explanation™ seems to capture. My second reason is that to contrast
emergent explanation with reductionist explanation would be to invite a common misunderstanding of the notion of
emergence—uViz., to suggest that emergentist accounts embrace mystery and fail to explain how higher-level properties
arise from basic structures and interactions. Recent emergentist hypotheses are by no means silent on such matters. The
contrast lies in the ways in which the lower-level properties and features combine to yield the target phenomena. This
kind of emergentist explanation is really a special case of reductionist explanation, at least as intuitively construed,
since the explanations aim to render the presence of the higher-level properties unmysterious by reference to a
multitude of lower-level organizational facts.4 For these reasons, then, it will be more accurate and less confusing to
contrast emergent explanation with componential explanation than with reductionist theorizing in general.

Modular programming methods in classical Al2 lent themselves quite nicely to a componential form of explanation. In
attempting to understand the success of such a program, it is often fruitful to isolate the various sub-
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routines, modules, etc. and to display their role in dividing the target problem into a manageable series of subproblems
(Dennett 1978a).

Recent "connectionist” work, as Wheeler (1994) points out, is likewise amenable to a kind of componential
explanation. Solutions to complex problems such as the recognition of handwritten Zip codes (Le Cun et al. 1989)
exploit highly structured, multi-layer networks (or networks of networks). In such cases it is possible to advance our
understanding of how the system succeeds by asking after the roles of these gross components (layers or subnets). This
kind of explanation is most compelling when the components admit of straightforward representational
interpretation—that is, when the target systems have reliably identifiable internal configurations of parts that can be
usefully interpreted as "representing aspects of the domain ... and reliably identifiable internal components that can be
usefully interpreted as alogorithmically transforming those representations” (Beer 19953, p. 225). In short: there is a
relation between the componential analysis of intelligent systems and the image of such systems as trading in internal
representations, for the distinctive roles of the posited components are usually defined by reference to the form or
content of the internal representations they process.

""Catch and Toss" Explanation
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This is my pet name for an approach that takes seriously many of the insights of embodied, embedded cognition but
continues to view them through the lens of a traditional analysis. The main characteristic of the "catch and toss" mode
is that the environment is still treated as just a source of inputs to the real thinking system, the brain. The concession to
the embodied perspective involves recognizing that such inputs can lead to actions that simplify subsequent
computations. The traditional image of an input-thought-action cycle is maintained, but the complex and reciprocal
influences of real-world action taking and internal computation are recognized. Research on animate vision displays
something of this character in its description of how low-resolution visual input can lead to real-world actions (such as
moving the head or the fovea) that in turn generate more input suitable for higher-resolution processing. Here we
confront a description that recognizes the multiple and complex ways in which the inner jobs can be altered and
simplified by means of real-world
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structure, bodily dynamics, and active interventions in the world. But we also find a quite traditional emphasis on, and
concern with, the realms of inner processing, internal representations, and computations (such as the construction of
minimal internal databases encoding special-purpose "indexical” representations such as "My coffee cup is yellow"; see
Ballard 1991, pp. 71-80). The peaceful coexistence of these two images (of the active, embedded system and of the
primacy of the inner processing economy) is maintained by a firm insistence on the boundary between the brain and the
world. The world tosses inputs to the brain, which catches them and tosses actions back. The actions may alter or
simplify subsequent computations, by causing the world to toss back more easily usable inputs and so on. In short,
there is a strong commitment to interactive modes of explanation, but the traditional focus on representation and
computation in the individual brain is respected. One reason for this, implicit in the "catch and toss" idea itself, is that
much of the focus in these cases is on simple feedback chains in which the system's actions alter its next inputs, which
control the next action and so on. In such cases the relative low dimensionality of the interactions allows us to
understand the system's behavior using quite conventional tools. By contrast, as the complexity and the dimensionality
of crucial interactions increase, it becomes difficult (perhaps impossible) to conceptualize the situation by simply
superimposing a notion of feedback loops on top of our standard understanding. Such critical complexity arises when
the number of feedback processes increases and when the temporal staging of the various processes goes "out of
synch," allowing feedback to occur along multiple channels and on multiple, asynchronous time scales. &

Emergent Explanation

Emergent explanation is at once the most radical and the most elusive member of our trinity. Whereas "catch and toss"
explanation is really just a sensitive and canny version of componential explanation, emergent explanation aims to offer
a w